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ABSTRACT

Medical image segmentation remains a difficult, time-consuming task; currently, liver segmentation
from abdominal CT scans is often done by hand, requiring too much time to construct patient-specific
treatment models for hepatocellular carcinoma. Image segmentation techniques, such as level set meth-
ods and convolutional neural networks (CNN), rely on a series of convolutions and nonlinearities to
construct image features: neural networks that use strictly mean-zero finite difference stencils as con-
volution kernels can be treated as upwind discretizations of differential equations. If this relationship
can be made explicit, one gains the ability to analyze CNN using the language of numerical analysis,
thereby providing a well-established framework for proving properties such as stability and approxi-
mation accuracy. We test this relationship by constructing a level set network, a type of CNN whose
architecture describes the expansion of level sets; forward-propagation through a level set network is
equivalent to solving the level set equation; the level set network achieves comparable segmentation
accuracy to solving the level set equation, while not obtaining the accuracy of a common CNN archi-
tecture. We therefore analyze which convolution filters are present in a standard CNN, to see whether
finite difference stencils are learned during training; we observe certain patterns that form at certain
layers in the network, where the kernels cannot be accounted for by finite difference stencils alone.
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1. INTRODUCTION - DESCRIPTION OF PURPOSE

Liver cancer is the sixth most common form of cancer annually; in 2018, liver cancer was the fourth
most common ICD-10 cancer-related code specified for cancer-related deaths globally.1 The majority
of liver cancer cases are instances of hepatocellular carcinoma (HCC).2 A diagnosis of HCC relies
heavily on the results of biopsy and medical imaging.3 However, intra-observer variability of medical
images complicates the diagnosis process.4 Image segmentation addresses this issue by providing a
reproducible measure to evaluate liver and tumor volumetric data.

While many methods have been employed for both automatic and semiautomatic image segmenta-
tion,5 we focus on level set methods and deep convolutional neural networks, with the aim of combining
these two frameworks to provide a fast, accurate, and interpretable segmentation model. Level sets
and CNNs are considered the current standards for medical image segmentation. Both level sets and
CNNs rely on convolutions to detect and explain image features. Upwind finite difference approxi-
mations, such as those in the fast marching method implemented in ITK-SNAP,6 can be expressed
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as the convolution of finite difference stencils followed by a ReLU nonlinearity. As such, a forward
Euler discretization of the level set equation can be written in the same language as a CNN: a series
of convolutions followed by nonlinear activation functions. In this work, we examine which types of
convolution kernels are important for image segmentation of the liver, and we compare how well the
level set methods fair at liver segmentation when we replace the finite difference stencils in the level
set equation with convolutions learned during training.

2. METHODS

We exploit this relationship between CNNs and numerical differential equations to design a neural
network whose architecture and connections mirror the structure of solving the level set equation,
while taking advantange of the flexibility of learning convolution kernels as in a CNN.

To do so, we unrolled a numerical method for solving the level set equation, creating a level set
network (LSN). In this framework, each timestep becomes a layer in a CNN. This concept, of treating
layers in a CNN as a system of differential equations, has gained recent attention using the ResNet
architecture in tehe context of adjoint equations for dynamical systems7.8 However, these neural
network formulations do not assume that the differential equation in question has a specific form.
As image segmentation has been accomplished using the level set equation, it is intuitive to attempt
to construct a neural network that approaches this specific PDE. In this sense, the correct curve
evolution is then ‘learned’ by the level set network. The LSN maintains the architecture of solving
the level set equation, but replaces the finite difference operators with learned convolution kernels.
Additionally, we are the first (to our knowledge) to incorporate the nonlinearity of the ReLU function
into this treatment of PDEs-as-NNs by using an upwind finite difference scheme, providing a more
stable numerical discretization to this interpretation.

To test this concept, we employed three segmentation methods on the MICCAI 2017 LiTS Challenge
dataset,5 consisting of 131 abdominal contrast-enhanced CT image stacks. These methods were: UNet,9

a type of CNN; ITK-SNAP,6 a segmentation application using the level set equation; and our level set
network (LSN). For UNet and LSN, we performed a 5-fold cross validation, training via the Adadelta
optimizer until saturation (40 epochs for UNet, 20 for LSN), with the Dice Similarity Coefficient (DSC)
as the loss function. For ITK-SNAP, which allows users to hand-tune a few parameters, we allotted
10 min for a user to alter these parameters to achieve the best segmentation, after which ITK-SNAP
solved the level set equation until DSC no longer improved.

3. RESULTS

Using the three methods described above, we obtained the DSC scores listed in Table 1. It is somewhat
unsurprising that the results from the LSN are roughly on-par with those of ITK-SNAP, as these two
methods approach segmentation using the same framework, of a curve propagating outwards, with
its expansion rate determined by the underlying image topology. The superior performance of UNets
suggest that finite difference kernels do not explain the power of convolutional networks on their own.

We confirmed this insight by plotting the convolution kernels obtained from training our UNet. We
first flattened our 3x3 convolution kernels into a vector in R9, and we then performed clustering with
n = 3 clusters using k-means, using Euclidean distance in 9-dimensional space. To visualize our results,
we projected the kernels using PCA onto the 2-dimensional subspace spanned by the eigenvectors with
greatest variation. Onto this projection, we superimposed various hand-crafted kernels that describe
common image processing features, such as a Gaussian blurring kernel, and various edge detection
kernels; these edge detection kernels are the finite difference stencils used by the level set equation.



K-Fold ITK-SNAP UNET LSN Test LSN Validation

0 0.736 0.912 0.837 0.619
1 0.600 0.919 0.847 0.729
2 0.483 0.874 0.116 0.005
3 0.730 0.895 0.827 0.606
4 0.643 0.915 0.831 0.596

Avg 0.640 0.903 0.692 0.511
Avg\{2} 0.604 0.911 0.837 0.638

Table 1: DSC scores for each fold, from training the level set network. While all methods struggled
with fold k = 2, LSN fared particularly poorly during validation, due to its initialization procedure.
When discarding this fold, LSN compares more favorably to the other methods.
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Figure 1: Visualization of 3x3 convolution kernels from selected layers of a UNet with a depth of 4.
Colors correspond to K-means cluster assignment. Layers 1,3-10 (not shown) are similar to Convolution
Layer 11. Layers 1-9 belong to the encoder portion of the UNet; layers 10-18 belong to the decoder.
Observe that the further along the net, the more clustered the kernels become.

Our clustering results, as illustrated in Figure 1, suggest that for many layers in this UNet, there
is no clear distinction between various types of kernels. However, on the decoder (upsampling) side
of the UNet architecture, several patterns begin to emerge, even if the data do not cleanly fall into
clusters: there are several layers, specifically towards the bottom of the UNet and later, where otherwise-



uninterpretable convolution features are frequent. We note from these images that there is no clear
cluster among the UNet kernels around first-order finite difference stencils i.e. up-down or left-right
edge detection kernels; this observation reinforces our insight from above: finite difference kernels alone
cannot explain the predictive power of our UNet.

4. CONCLUSIONS AND NOVELTY

We demonstrate a flexible framework for using numerical analysis to provide insight into CNNs: we
interpret upwind finite difference schemes as a convolution layers with ReLU activation functions.
However, this alone is not sufficient to explain why CNNs are as accurate as they are. Our comparison
between LSN, UNet, and the level set equation illustrates that finite difference kernels combined with
ReLU activation functions are not sufficient on their own to obtain high-accuracy image segmentation
for liver CT data; there are certain convolution kernels learned by a UNet that cannot be explained
using commonly-invoked image features and filters. Developing an understanding of the bottom layer
and decoder portions of a CNN is a crucial step to being able to explain the predictive power of CNNs
for image segmentation, which would enable an interpretation of convolution kernels in clinical terms.

5. SUBMISSION INFORMATION

Work on the numerical analysis of level set networks has been accepted for a poster at AMIA Annual
Conference 2019, and will be submitted to Rice Data Science Conference 2019.
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