
Identification of Kernels in a Convolutional Neural

Network: Connections Between Level Set Equation and

Deep Learning for Image Segmentation

Jonas A. Actora, David T. Fuentesb, and Béatrice Rivièrea
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ABSTRACT

Medical image segmentation remains a difficult, time-consuming task; currently, liver segmentation
from abdominal CT scans is often done by hand, requiring too much time to construct patient-specific
treatment models for hepatocellular carcinoma. Image segmentation techniques, such as level set meth-
ods and convolutional neural networks (CNN), rely on a series of convolutions and nonlinearities to
construct image features: neural networks that use strictly mean-zero finite difference stencils as con-
volution kernels can be treated as upwind discretizations of differential equations. If this relationship
can be made explicit, one gains the ability to analyze CNN using the language of numerical analysis,
thereby providing a well-established framework for proving properties such as stability and approxi-
mation accuracy. We test this relationship by constructing a level set network, a type of CNN whose
architecture describes the expansion of level sets; forward-propagation through a level set network is
equivalent to solving the level set equation; the level set network achieves comparable segmentation
accuracy to solving the level set equation, while not obtaining the accuracy of a common CNN archi-
tecture. We therefore analyze which convolution filters are present in a standard CNN, to see whether
finite difference stencils are learned during training; we observe certain patterns that form at certain
layers in the network, where the learned CNN kernels depart from known convolution kernels used to
solve the level set equation.

Keywords: image segmentation; convolutional neural networks; numerical analysis; clustering

1. INTRODUCTION

Liver cancer is the sixth most common form of cancer annually; in 2018, liver cancer was the fourth
most common ICD-10 cancer-related code specified for cancer-related deaths globally.1 The majority of
liver cancer cases are instances of hepatocellular carcinoma (HCC).2 A diagnosis of HCC relies heavily
on the results of biopsy and medical imaging,3 and such imaging is increasingly being used to devise
more accurate radiotherapy treatment plans.4 Automatic image segmentation therefore can play an
important role in devising treatment plans for certain patients with HCC.

While many methods have been employed for both automatic and semiautomatic image segmenta-
tion5,6 such as statistical shape models7 and graph cut models,8 we focus on level set methods9 and
deep convolutional neural networks,1011 with the aim of combining these two frameworks to provide a
fast, accurate, and interpretable segmentation model. Level sets and CNNs are considered among the
current standards for medical image segmentation. In this work, we examine which types of convolu-
tion kernels are important for image segmentation of the liver, and we compare how well the level set
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methods fair at liver segmentation when we replace the finite difference stencils in the level set equation
with convolutions learned during training.

1.1 Level Set Methods

Level set segmentation methods conduct image segmentation as propagating either a region or a curve
within an image as to match the desired region in question. The evolution of this curve is described by
the level set equation (LSE), which couples the curvature of the expanding region, image intensities and
gradients to specify exactly how the curve evolves in space and time;12 this equation, which governs
geodesic active contours,13 is given for a fixed image I : Ω ⊂ R2 → R and edge detection function
gI : Ω→ R as

∂tu− γ ∇gI · ∇u︸ ︷︷ ︸
convection

− gI (α+ βκ(u)) ‖∇u‖︸ ︷︷ ︸
mean curvature

= 0, (1)

where α, β, γ ∈ R are scalars and κ(u) = ∇·
(
∇u
‖∇u‖

)
is the mean curvature of the solution u. Level set

methods are at the core of several widely-used toolkits for image segmentation, including the popular
segmentation engine ITK-SNAP,14 and these methods are able to achieve decent results.9 The solution
of Equation 1 is most often obtained using an upwind finite difference scheme paired with a fast
marching method12.15

However, level set methods are limited in several regards: they require hand-tuned parameters
to balance outward expansion versus tangential expansion; they are only semiautomatic, requiring
an initial configuration or initial condition for propagation; they fail to distinguish between adjacent
regions with similar intensities; and they are comparatively expensive to evaluate, especially for 3D
imaging modalities, due to the growth of the number of voxels in 3D and due to the number of timesteps
needed to obtain an accurate solution.12

1.2 Convolutional Neural Networks

CNN architectures have achieved remarkable accuracy in several online benchmarks and challenges; for
example, the UNet10 and ResNet11 architectures both displayed fundamental improvements in medical
image analysis, particularly for image classification. Indeed, in the MICCAI LiTS Challenge 2017,
many of the top-performing entrants used some variation of CNNs.5 However, CNNs are complex
systems, often treated as black boxes, lacking interpretability and difficult to analyze. Recent concerns
surrounding data manipulation and adversarial attack make these methods suspect to abuse from
external bad actors.16 Slight manipulations, such as adding noise or making small rotations to input
data,17 fool CNN classifiers into mistaking, for example, a skin tumor as being malignant when it
should be classified as benign.16

1.3 Similarities between Level Set Methods and Convolutional Neural Networks

Both level sets and CNNs rely on convolutions to detect and explain image features. Upwind finite
difference approximations, such as those in the fast marching method implemented in ITK-SNAP,14

can be expressed as the convolution of finite difference stencils followed by a ReLU nonlinearity: we
sketch this similarity in Table 1. Computationally, solving the level set equation and passing through
a convolutional neural network perform the same operations at each step. As such, a forward Euler
discretization of the level set equation can be written in the same language as a CNN: a series of
convolutions followed by nonlinear activation functions.
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ReLU upwind scheme activation function

max(0, D+ ∗ u)−max(0,−D− ∗ u) max(0,K ∗ x+ b)

Table 1: Similarities in structure between convolutional neural networks and solvers for the level set
equation. Above, D+ and D− are shifted variants of the same finite difference kernel (for example,
D+ = [−1 1 0] for a forward first-order approximation of ∂x and D− = [0 −1 1] for the corresponding
backward first-order stencil), K is a learned convolution kernel, b is a bias term, and the ∗ operator
denotes convolution.

2. METHODS

We exploit this relationship between CNNs and level set equations to design a neural network whose
architecture and connections mirror the structure of solving the level set equation, while taking advan-
tange of the flexibility of learning convolution kernels as in a CNN.

To do so, we unrolled a numerical method for solving the level set equation, creating a level set
network (LSN). In this framework, each timestep becomes a layer in a CNN. This concept, of treating
layers in a CNN as a system of differential equations, has gained recent attention using the ResNet
architecture in the context of adjoint equations for dynamical systems18.19 However, these neural
network formulations do not assume that the differential equation in question has a specific form.
As image segmentation has been accomplished using the level set equation, it is intuitive to attempt
to construct a neural network that approaches this specific PDE. In this sense, the correct curve
evolution is then ‘learned’ by the level set network. The LSN maintains the architecture of solving
the level set equation, but replaces the finite difference operators with learned convolution kernels.
Additionally, we are the first (to our knowledge) to incorporate the nonlinearity of the ReLU function
into this treatment of PDEs-as-NNs by using an upwind finite difference scheme, providing a more
stable numerical discretization to this interpretation.

2.1 Construction of a Level Set Network

To construct our Level Set Network, we approximate Equation 1 using a Forward Euler scheme in time
and then an upwind finite difference scheme in space, similar to what ITK-SNAP and other solvers use
to approximate the solution to the level set equation. The Euler timestepping scheme provides residual
connections as in ResNet11,18 in the sense that each timestep is computed by making some (nonlinear)
update to the current timestep, as illustrated in Equation 2.

Forward Euler u(t+1) = u(t) + dt (γ∇gI · ∇u+ gI(α+ βκ(u)) ‖∇u‖)
ResNet block u(`+1) = u(`) + ReLU(K ∗ u(`) + b)

(2)
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Figure 1: Architecture of our UNet for testing and comparison

Next, in every place a finite difference kernel is applied, we replace the specified finite difference kernel
with a convolution layer, to be learned by the LSN during training. Due to concerns for numerical
stability, the convection term kernel was not changed in this way.

2.2 Training and Testing

To test this concept, we employed three segmentation methods on the MICCAI 2017 LiTS Chal-
lenge dataset,5 consisting of 131 abdominal contrast-enhanced CT image stacks. These methods were:
UNet,10 a type of CNN; ITK-SNAP,14 a segmentation application using the level set equation; and our
level set network (LSN).

We implemented our level set network and our UNet in Python, using the toolkit Keras.20 Our
UNet architecture is shown in Figure 1. For training, full set of 131 CT image stacks is divided into
training (80% of stacks) and validation sets (20%). The training set is then split again, into a training
subset (90% of slices in 80% of stacks) and a testing subset (10% of slices in 80% of stacks). We repeat
the 80-20 split, cycling through the data as to withhold a different fifth of the data for validation in
each instance. On the training subset, we restrict the training and testing data to only include CT
slices that displayed some of the liver. For each, we use the Adam optimizer to train our networks.
Our loss function L is calculated as an L2 relaxation of the Dice similarity coefficient (DSC) as

L(A,B) = 1−DSC(A,B)

= 1− 2
|〈A,B〉|

‖A‖2 + ‖B‖2

=
‖A−B‖2

‖A‖2 + ‖B‖2
.

(3)

All network weights are initialized from a random standard normal distribution, and our initial con-
ditions for our level set follow a random uniform distribution. We use a timestep dt = 1 and a
number of layers/timesteps Nt = 5. We trained until saturation (40 epochs for UNet, 20 for LSN).
Ultimately, the number of timestep and the number of epochs for the LSN were constrained by lim-
its on the number of computation hours we could run, as training the LSN takes noticeably longer
due to the more complicated network architecture. Code for the LSN and UNet are available at
github.com/jonasactor/livermask.

github.com/jonasactor/livermask


Figure 2: Segmentation output from LSN. Left to right: original CT image; CT image with true
segmentation in red/green; LSN segmentation in white, overlayed with true segmentation in red/green.

For the results using ITK-SNAP, since the software interface asks for user initialization and hyperpa-
rameter tuning, we allot the practitioner a fixed amount of time (10 min) to adjust these parameters,
after which ITK-SNAP solves the level set equation until DSC scores no longer improved. All our
computations were run using an NVIDIA Quadro P5000 GPU.

3. RESULTS

3.1 LSN Performance

Using the three methods described above, we obtained the DSC scores listed in Table 2. It is somewhat
unsurprising that the results from the LSN are roughly on-par with those of ITK-SNAP, as these two
methods approach segmentation using the same framework, of a curve propagating outwards, with its
expansion rate determined by the underlying image topology. An example of the output from LSN is
in Figure 2. The superior performance of UNets suggest that finite difference kernels do not explain
the power of convolutional networks on their own.

3.2 Kernel Analysis

We confirmed this insight by plotting the convolution kernels obtained from training our UNet. We first
flattened our learned 3x3 convolution kernels into a vector in R9, and we then performed clustering with
k = 3 clusters using k-means, using Euclidean distance in 9-dimensional space. To visualize our results,
we projected the kernels using PCA onto the 2-dimensional subspace spanned by the eigenvectors with
greatest variation. Onto this projection, we superimposed the finite difference kernels used by ITK-
SNAP to solve the level set equation exactly - the standard five-point Laplacian kernel, identity kernel,
and various edge detection kernels. For the sake of comparison and potential interpretability, we also
superimpose kernels that describe common image processing -the Gaussian blurring kernel, local mean
blurring kernel, and a sharpening kernel.



Our clustering results, as illustrated in Figure 3, suggest that for many layers in this UNet, there
is no clear distinction between various types of kernels. However, on the decoder (upsampling) side
of the UNet architecture, several patterns begin to emerge, even if the data do not cleanly fall into
clusters: there are several layers, specifically towards the bottom of the UNet and later, where otherwise-
uninterpretable convolution features are frequent. We note from these images that there is no clear
cluster among the UNet kernels around first-order finite difference stencils i.e. up-down or left-right
edge detection kernels; this observation reinforces our insight from above: finite difference kernels alone
cannot explain the predictive power of our UNet.

4. DISCUSSION

We demonstrate a flexible framework for using numerical analysis to provide insight into CNNs: we
interpret upwind finite difference schemes as a convolution layers with ReLU activation functions.
However, this alone is not sufficient to explain why CNNs are as accurate as they are. Our comparison
between LSN, UNet and the level set equation illustrates that there are substantial differences in
performance between each of these methods, despite the similarities in the mathematical mechanisms
underlying the computational methods for each; UNet is the most successful of these methods, while
LSN and the level set equation produce less accurate segmentations on the MICCAI LiTS dataset.
Our subsequent kernel analysis visualizes the differences between kernels learned by the UNet and
those used by the level set equation - the known kernels we superimpose on our clustering plots - where
trends in clusters of the learned kernels begin to establish patterns in the decoder portions of our UNet.
These patterns escape away from where the known level set equation kernels (and other common image
processing kernels) are located on the clustering plots. Therefore, developing an understanding of the
bottom layer and decoder portions of a CNN is a crucial step to being able to explain the predictive
power of CNNs for image segmentation, which would enable an interpretation of convolution kernels
in clinical terms.
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K-Fold ITK-SNAP UNET LSN Test LSN Validation

0 0.736 0.912 0.837 0.619
1 0.600 0.919 0.847 0.729
2 0.483 0.874 0.116 0.005
3 0.730 0.895 0.827 0.606
4 0.643 0.915 0.831 0.596

Avg 0.640 0.903 0.692 0.511
Avg\{2} 0.604 0.911 0.837 0.638

Table 2: DSC scores for each fold, from training the level set network. While all methods struggled
with fold k = 2, LSN fared particularly poorly during validation, due to its initialization procedure.
When discarding this fold, LSN compares more favorably to the other methods. ITK-SNAP and UNET
numbers are on the validation set for each fold.



(a) Convolution Layer 2 (b) Convolution Layer 11 (c) Convolution Layer 12

(d) Convolution Layer 13 (e) Convolution Layer 14 (f) Convolution Layer 15

(g) Convolution Layer 16 (h) Convolution Layer 17 (i) Convolution Layer 18

Figure 3: Visualization of 3x3 convolution kernels from selected layers of a UNet with a depth of 4.
Colors correspond to K-means cluster assignment. Layers 1,3-10 (not shown) are similar to Convolution
Layer 11. Layers 1-9 belong to the encoder portion of the UNet; layers 10-18 belong to the decoder.
Observe that the further along the net, the more clustered the kernels become.
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