
Computation for the Kolmogorov

Superposition Theorem

Jonas Actor

Thesis: Master of Arts
Computational and Applied Mathematics
Rice University, Houston, Texas (May 2018)

ii

Abstract

This thesis presents the first known method to compute Lipschitz continuous inner func-

tions for the Kolmogorov Superposition Theorem. While the inner functions of these su-

perpositions can be Lipschitz continuous, previous algorithms that compute inner functions

yield only Hölder continuous functions. These Hölder continuous functions suffer from high

storage-to-evaluation complexity, thereby rendering the Kolmogorov Superposition Theorem

impractical for computation. Once this concern is addressed, the Kolmogorov Superposition

Theorem becomes an effective tool in dimension reduction to represent multivariate functions

as univariate expressions, with applications in encryption, video compression, and image

analysis. In this thesis, I posit sufficient criteria to iteratively construct a Lipschitz contin-

uous inner function. I demonstrate that implementations of the predominant approach for

such a Lipschitz construction do not satisfy these conditions. Instead, I manipulate Hölder

continuous inner functions to create Lipschitz continuous reparameterizations. I show these

reparameterizations meet my sufficient conditions, thereby guaranteeing that these reparam-

eterized functions are inner functions for the Kolmogorov Superposition Theorem.

iii

Acknowledgements

Thank you to the mentors, teachers, professors, colleagues, friends, and family who have

made this possible. A special thank you is deserved for my adviser, Dr. Matthew Knepley,

for all his work, conversations, ideas, and feedback as I have worked under his guidance on

the Kolmogorov Superposition Theorem. I am also grateful to the other members of my

committee, Dr. Riviere and Dr. Chan, for their helpful insight and opinions.

The author acknowledges support from the Ken Kennedy Institute Computer Science &

Engineering Enhancement Fellowship, funded by the Rice Oil & Gas HPC Conference.

Contents

List of Illustrations vii

1 Introduction 1

1.1 The Curse of Dimensionality . 1

1.2 Outline of This Thesis . 3

2 Background 6

2.1 Motivation: A Question of Nomography . 6

2.2 Refinements to KST . 9

2.2.1 Reducing the Number of Functions 9

2.2.2 Improving Smoothness . 12

2.3 Computational KST . 14

2.3.1 Exact KST Computation . 14

2.3.2 Approximations to KST Inner Functions 15

2.3.3 Approximations using KST Structure 16

2.4 Applications of KST . 18

2.5 Unresolved and Related Questions . 20

3 Sufficient Conditions for Constructing KST Inner Functions 23

3.1 Kolmogorov’s Original Conditions . 24

3.2 Sprecher’s Reduction . 28

3.3 Conditions for Improved Smoothness of the Inner Function 31

3.4 A Summary of Conditions . 38

3.4.1 Conditions on Spatial Decompositions 38

3.4.2 Conditions on Function Values . 39

v

4 The Fridman Strategy 41

4.1 Characterization of the Fridman Strategy . 41

4.2 The Fridman Strategy with Fridman’s Disjoint Image Condition 44

4.2.1 Posing an Algorithm . 45

4.2.2 Find Stage . 46

4.2.3 Plug Stage . 49

4.2.4 Break Stage . 53

4.2.5 Proof of the Algorithm . 57

4.3 The Fridman Strategy with the Conservative Disjoint Image Condition . . . 64

4.3.1 Motivation for Using the Conservative Disjoint Image Condition . . . 65

4.3.2 Find and Plug Stages . 68

4.3.3 Break Stage . 68

4.3.4 Implications . 82

5 A Reparameterization Argument 86

5.1 Hedberg and Kahane’s Reformulation . 87

5.1.1 A Geometric Interpretation of KST 87

5.1.2 Guarantee of Lipschitz Inner Functions 92

5.2 A Hölder Continuous Inner Function . 95

5.3 Reparameterization . 99

5.4 Verification of Sufficient Conditions for KST 103

A Statement of Hilbert’s 13th Problem 110

B Proof of the Kolmogorov Superposition Theorem 112

C Three Aspects of Sprecher’s KST Reformulation 120

C.1 Construction of ψ and Tk,q . 121

C.2 Verification of the Disjoint Image Condition 122

C.3 Justification of Hölder Continuity . 124

vi

D Code: The Fridman Strategy 126

E Code: Köppen’s Inner Function 139

Bibliography 143

Illustrations

3.1 A set Sk,q that nearly partitions I2. Each square Sij ∈ Sk,q is the Cartesian

product of two intervals Sij = Ti × Tj where Ti, Tj ∈ Tk,q. 25

3.2 Sketch of set of squares Sk,q that satisfy the Disjoint Image Condition.

Observe that the image of each square Sij ∈ Sk,q under Ψq is disjoint, and

that the image of each Sij under Ψ
q are connected, since Ψq is a continuous

function and Sij is a connected domain. 26

3.3 Example of intervals Tk,q that satisfy the All But One Condition. Note that

in this construction, each line of intervals is a translation of the line below it;

this translation trick is a convenient method to make sure that the All But

One Condition is satisfied, although it is not necessary. 27

3.4 Kolmogorov’s self-similar refinement for n = 2. Note that the fundamental

unit of the self-scaling includes both the interval and the gap to the right of

the interval. 28

3.5 Sketch of the relationship between the sets Sk and �
k under the Conservative

Disjoint Image Condition. Compare to Figure 3.2; with the Cconservative

Disjoint Image Condition, the image intervals ∆k
ij envelope the intervals

Ψq(Sk
ij). Since more space needs to be allocated for the intervals ∆k

ij than

Ψq(Sk
ij), they deemed more conservative, hence the name of the condition. . 31

3.6 Defining ψk during refinement level k. Note that for each k ∈ N, the

function ψk is contant on intervals and linear on gaps, where the values at

the left endpoints of the intervals are fixed and held constant for all k� > k.

This process yields a final function ψ that is differentiable almost

everywhere, with derivative 0 almost everywhere, and not differentiable on a

dense set of points. 34

viii

3.7 Breaking intervals roughly in half. This breaking process is crucial to show

that the functions ψk converge. 36

3.8 Scenario in which it is necessary to add small segments to maintain the All

But One Condition. As adding these small segments increases the slope of

the function ψk+1 (see Figure 3.9), it is crucial to choose the segments

sufficiently small. 37

3.9 Sketch of how size of plugs changes the slope of ψk. Note that larger plugs

correspond to a greater slope in the new function ψk+1. 38

4.1 Illustration of the set Qc. In this example the set Qc = {−4, 2}. 48

4.2 Sketch of scenario for finding two plugs, with ψk solid and ψk+1 dotted. Note

the symmetry constraint b1 − �p1 = �p2 − a2 is enforced. 51

4.3 Implementation of Fridman Strategy Algorithm for k = 11. Note that this

function is has slope bounded above by one, and is monotonic increasing. . 57

4.4 Plot of Ψ9(S1). The tall lines demarcate the start of the image intervals;

without them, the overlap of the image intervals would not necessarily be

visible. Note that these image intervals clearly fail to be disjoint. 62

4.5 Plot of Ψ9(S2). Again, the tall lines demarcate the start of the image

intervals. Due to the significant overlap, even only for the second level of

refinement, it is difficult to tell how many intervals overlap with each other;

they are clearly not disjoint. 63

4.6 Setup of squares after breaking step k, thereby creating squares k + 1. Note

that the notation reflects which values are fixed to which squares during

refinement: the squares that maintain index i share the function value (for

that coordinate direction) as with its parent, whereas the squares with index

N reflect a new value that has been assigned. 69

ix

5.1 Relationship of homeomorphisms that enable a Lipschitz reparameterization

of arbitrary KST inner functions. On the left are the coordinates as they are

mapped between each other, and on the right are the spaces characterized

by the homeomorphisms in question. 94

5.2 Plots of Köppen’s �ψk for first few values of k. Note that the The functions

�ψk are self-similar at two alternating scales. For a more detailed analysis of

this self-similarity, see [26] and [7]. 97

5.3 Plots of ψk for first few values of k. Note that the slopes appear to all be

bounded, meaning that ψk is Lipschitz, and that they appear to converge

uniformly as k → ∞. 101

5.4 Plot of �ψ6 and ψ6. Note that ψ6 has a much more controlled slope than �ψ6.

This makes sense, given ψ is Lipschitz continuous whereas �ψ is not. 102

5.5 Semilog plot of the largest interval sizes in Tk = σ(Rk) for the first few

values of k. Note that the largest interval size decreases at O(2−k); this

trend suggests that the Refinement Condition is met. 105

5.6 Shifted families of Tk = σ(Rk) for k = 1. Note that the breaks are located in

the same position for each set of intervals, with the breaks of σ(R1) smaller

than that of R1 alone; thus, the All But One property is preserved. 107

5.7 Shifted families of Tk = σ(Rk) for k = 2. Note that while the breaks are no

longer located in the same position for each set of intervals, the sizes of the

breaks in T2 are smaller than that of R2; thus, the All But One property is

preserved. Additionally, note that the largest intervals are only roughly half

the size of the those at the previous level of refinement, demonstrating the

comparative sharpness of the O(2k) bound presented in Figure 5.5. 108

1

Chapter 1

Introduction

In this chapter, I frame the problem of why the Kolmogorov Superposition Theorem is of

relevance to modern computational science, and how I will approach the task of constructing

a Lipschitz continuous inner function for use in the Kolmogorov Superposition Theorem. In

Section 1.1, I describe how the Kolmogorov Superposition Theorem relates to the Curse

of Dimensionality, and I state the Kolmogorov Superposition Theorem. Then, Section 1.2

outlines the approach I take in this thesis to represent continuous multivariate functions

using Lipschitz inner functions. Over the course of this thesis, I describe the difficulties with

the predominant existing strategy for to construct these functions, and I pose an alternative

approach that uses a different underlying theory to circumvent these difficulties.

1.1 The Curse of Dimensionality

The Curse of Dimensionality manifests when modeling physical phenomena in multiple di-

mensions: the number of points required for accurate computation grows exponentially with

the dimension (Bellman [4]). As a result, specific methods that take advantage of underlying

structure are needed to solve high dimensional problems. Examples of such problems in-

clude the Hamilton-Jacobi Equations (Darbon and Osher [9]) and PDE-constrained optimal

control problems (Biegler et al. [6]). Therefore, it is natural to wonder if it is possible to

reduce the number of dimensions pertinent to computation, in order to expedite the solution

2

of these problems.

In their text on problems in analysis, Pólya and Szegö posed several questions related

to representing functions of multiple variables (Pólya and Szegö [36]). Among others, they

asked the following question (ibid., p.79):

Are there actually functions of three variables?

It is not difficult to write an expression involving three variables. What this question asks

is whether it is systematically possible to use compositions of functions of two (or fewer)

variables to express any function of three variables. If so, this reduces the number of inputs

required for function evaluation from three inputs, to a sequence of computations involving

only two inputs at any given time. Regarding continuous functions, the Kolmogorov Super-

position Theorem (KST) answers Pólya and Szegö’s question in the negative: there are no

true continuous functions of three variables, and there are no true continuous functions of

two variables other than addition, as seen in the following theorem.

Theorem 1.1.1 (KST). Let f ∈ C(In) : In → R be a continuous multivariate function.

There exist univariate continuous functions χq : I → R and ψp,q : R → R, where p = 1, . . . , n

and q = 0, . . . , 2n, such that for all x = (x1, . . . , xp) ∈ In,

f(x1, . . . , xn) =
2n�

q=0

χq

�
n�

p=1

ψp,q(xp)

�
. (1.1)

The functions ψp,q do not depend on the function f (Kolmogorov [25]).

It is difficult to utilize this theorem for efficient computation. The functions in Kol-

mogorov’s construction are pathological, being not differentiable on a dense set of points.

3

Later refinements to KST use functions that are Hölder continuous, which suffer from in-

creasing storage-to-evaluation ratios, thereby limiting the computational use of KST. While

there are theoretical results that state KST is possible using functions that are Lipschitz

continuous- which do not suffer from such poor ratios- there has not been a successful at-

tempt to perform computation with such Lipschitz continuous functions, to the author’s

knowledge. This thesis describes a method to enable such computation; the steps this thesis

takes to do so are outlined in the next section.

1.2 Outline of This Thesis

This thesis formulates an algorithm that defines a Lipschitz continuous function for the inner

summation of Equation 1.1 in KST. Chapter 2 summarizes the relevant background to this

task. Chapter 2 steps through the history of this problem, beginning with the problem as

posed by Hilbert, and proceeding through Kolmogorov’s proof and the successive refinements

to KST. Equally important are the previous attempts to compute functions using KST,

including those that utilize Hölder continuous functions, as they are the foundation for this

thesis. Also mentioned are various approximations related to KST, some being closer than

others. This chapter concludes with a description of various applications to which KST can

be applied, along with a list of some related open questions whose answers would advance

the goal of computing using KST.

Next, this thesis outlines the sufficient conditions for computing a Lipschitz continuous

inner function. Chapter 3 dissects the various conditions, given by Kolmogorov and others,

that provide the theoretical foundation for computational KST. Ultimately, these conditions

4

can be grouped into two categories: conditions on a spatial partition defined during the

computational process, and conditions on the function values that the inner function attains.

These conditions build a framework for an algorithmic approach to KST.

Chapter 4 uses the framework in the previous chapter to formulate two algorithms for

computational KST. Both of these algorithms use the Fridman Strategy, the predominant

method to try to construct Lipschitz inner functions for KST (Fridman [15]). These ap-

proaches differ in how they enforce the sufficient conditions described in Chapter 3. Algo-

rithms to enforce these conditions are described in detail, with particular care being given to

prove that these algorithm accomplish their goal. These algorithms make several significant

design choices, which determine how strictly the algorithm’s resulting function adheres to

the sufficient conditions for KST. Chapter 4 concludes that both approaches fail to construct

Lipschitz continuous inner functions, and the chapter discusses the structural difficulties of

the Fridman Strategy that limit its usefulness.

After discussing the general failures of the Fridman Strategy, Chapter 5 revisits the task

of computing a Lipschitz inner function using a different proof of KST. The arguments

in this chapter rely on a geometric formulation of KST, first provided by Hedberg and

Kahane ([19], [22]). This geometric viewpoint emphasizes that a Lipschitz inner function

can be constructed from a Hölder continuous inner function using a reparameterization

using the arclength of the inner function. I describe how such a task can be approached

computationally, and I show the resulting function satisfies the sufficient conditions for KST

previously discussed in Chapter 3.

While this thesis describes various implementations and algorithms to construct inner

functions in the Kolmogorov Superposition Theorem, this thesis does not attempt to imple-

5

ment the construction of the corresponding outer functions. For the results of this thesis to

be of benefit, an efficient scheme to compute the outer functions in KST is required. This

topic is left for now as future work to the wider community, although I aim to revisit this

topic soon.

6

Chapter 2

Background

This chapter frames the task of developing an algorithm to compute Lipschitz-continuous

variants of the Kolmogorov Superposition Theorem (KST), thereby enabling KST to be

used as a computational tool to reduce multivariate functions to univariate expressions. In

Section 2.1 I motivate the original problem in nomography, from which grew Kolmogorov’s

theorem. Section 2.2 explores the refinements to KST that allowed KST to be approached

computationally. In Section 2.3 I detail these computational approaches, primarily as a

means of compression, and describe how these solutions have been previously applied to

multivariate approximation. After highlighting several successful applications of KST in

Section 2.4, I conclude this chapter in Section 2.5 with a brief description of open problems

related to the Kolmogorov Superposition Theorem and its computation, highlighting how

these open questions reflect upon the goal of computing Lipschitz continuous inner functions

for KST.

2.1 Motivation: A Question of Nomography

The mathematician Andrei Kolmogorov was motivated to examine which types of functions

could be constructed out of superpositions of other functions so as to answer a fundamental

question posed by the mathematician David Hilbert in his 1900 Paris address at the second

International Congress of Mathematics. This question, Hilbert’s 13th problem, is a problem

7

in the field of nomography, the systematic parameterization of curves to define solutions of

equations in terms of fewer variables that the original formulation (Hilbert [20]). Specifi-

cally, Hilbert’s 13th problem inquires about the representability of the roots of a 7th degree

polynomial in terms of operations that involve functions of only two variables (Hilbert [20]);

a transcription of Hilbert’s statement of this problem from the Paris address is included

in appendix A. Hilbert originally conjectured that such a representation was not possible,

although it is unclear whether he had limited his consideration to the smaller class of nomo-

graphic parameterizations given by algebraic curves.

Kolmogorov approached this problem from a fundamentally different angle by examining

the level sets of space-filling curves, instead of algebraic curves. Such space-filling curves were

considered pathological at the time Hilbert first posed the 13th problem, so it is unsurprising

that Hilbert did not consider such functions in the context of nomography. Using these

curves, Kolmogorov proved that any functions of more than three variables, such as an

equation describing the roots of monic 7th degree polynomials in terms of its coefficients,

could be reduced to expressions involving strictly three variables (Kolmogorov [24]). By

refining this approach, Kolmogorov’s student Vladimir Arnold proved that functions of three

variables could be reduced to expressions involving only two variables (Arnold [1]), thereby

answering Hilbert’s problem.

However, Kolmogorov was unsatisfied with the complexity of his and Arnold’s proofs, and

he continued to work at this problem to reduce the number of variables required even further.

His work culminated in his Superposition Theorem, which he proved in 1957 (Kolmogorov

[25]). This theorem stated that any continuous multivariate function could be reduced to a

superposition of univariate functions and addition. Precisely, the Kolmogorov Superposition

8

Theorem (KST) is as follows:

Theorem 1.1.1 (KST). Let f ∈ C(In) : In → R be a continuous multivariate function.

There exist univariate continuous functions χq : I → R and ψp,q : R → R, where p = 1, . . . , n

and q = 0, . . . , 2n, such that for all x = (x1, . . . , xp) ∈ In,

f(x1, . . . , xn) =
2n�

q=0

χq

�
n�

p=1

ψp,q(xp)

�
. (1.1)

The functions ψp,q do not depend on the function f (Kolmogorov [25]).

Using refinements to this theorem, the 2n + 1 functions χq can be reduced to a single

function univariate function χ; this refinement is discussed in Section 2.2. As a result, KST

describes a mapping between continuous functions of multiple variables to a single univariate

function - the outer function in the superposition above. In Equation 1.1, this maps f to

χ. This mapping enables representing multivariate equations via their equivalent univariate

expressions; if this mapping can be conducted systematically, solving multivariate equations

can be achieved by solving the corresponding univariate equations, significantly reducing the

number of variables from n to one. The construction of outer KST functions remains an

outstanding task that this thesis fails to address, although the author aims to return to this

problem in future work.

Kolmogorov proved his theorem constructively, using a self-similar tiling of In to define

iteratively the inner functions ψp,q and the outer functions χq. This constructive proof is

the foundation of all known computational approaches to KST and is described in detail in

section 3.1.

9

2.2 Refinements to KST

While Kolmogorov’s proof outlines a constructive approach to superpositions, other math-

ematicians later worked to reformulate KST in ways that make KST more amenable to

algorithmic computation. These reformulations focused on reducing the number of func-

tions needed for KST representation and on improving the smoothness of those functions.

Only with these improvements is computational KST a possibility; to design an algorithm

to compute Lipschitz continuous inner functions, it is necessary to understand the theory

underlying these improvements.

2.2.1 Reducing the Number of Functions

Several of these reformulations reduced the number of functions needed for KST representa-

tion, as one of the drawbacks of Kolmogorov’s constructivist argument was the necessity to

define 2n2 + n distinct inner functions and 2n+ 1 outer functions. Unfortunately, Sternfeld

showed that the number of terms in each sum is the best possible, i.e. it is impossible to

represent all continuous functions using fewer than 2n + 1 terms in the summand for the

outer function, and with fewer than n terms in the inner summand (Sternfeld [45]). This

result provides a lower bound on the number of functions I must define algorithmically in my

efforts to turn KST into a computational tool. Because of Sternfeld’s work, mathematicians

turned to reducing the number of unique functions needed, attempting to reuse variants of

the same function to encode the representation instead.

Subsequent papers reduced the number of unique inner functions for KST from 2n2 + n

to a single function (Sprecher [38]). Instead of defining functions ψp,q individually, Sprecher

10

showed that it is sufficient to define a single function ψ on a larger (still compact) domain

and then reconstruct ψp,q from this parent function using shifting and scaling by preassigned

coefficients ε and λ1, . . . ,λn, which depend only on the spatial dimension n:

ψp,q(x) = λpψ(x+ qε). (2.1)

The shift ε is only required to be no larger than 1
2n
. The scaling factors λ1, . . . ,λn are

required to be integrally independent∗, which is the following condition on rational numbers

x1, . . . , xn ∈ Q:

If
n�

i=1

λixi = 0, then xi = 0 for i = 1, . . . , n. (2.2)

This property is necessary to complete Sprecher’s proof that his formulation demonstrates

the sufficient conditions Kolmogorov had previously established (Kolmogorov [25]). In this

thesis, particularly in my analysis of the Fridman Strategy in Chapter 4, I utilize this idea

of shifting and scaling to define only one inner function; I describe this process in further

detail in section 3.2.

Using shifted arguments to reduce the number of unique functions necessary was devel-

oped to reduce the number of outer functions as well (Lorentz [32]). By observing that the

images of the inner functions were bounded, Lorentz noted that it was sufficient to collect

the various outer functions χq and to assign shifts by a factor δ sufficiently large, so that

χq(y) = χ(y + δq). This new function χ is defined by the same process that was used to

define χq, so this change makes little difference from a computational standpoint. This single

∗By rescaling by the greatest common denominator, this is identical to being rationally independent.

11

function χ encodes the information described by the function f , and it therefore makes sense

to talk about χ as the Kolmogorov Representation of f in univariate form.

Combining these results of Sprecher and Lorentz, the following version of KST (first

noted by Sprecher) requires the definition of only one inner function and one outer function,

and it provides the basis for subsequent computational approaches to KST.

Theorem 2.2.1. Let f ∈ C(In) : In → R be a continuous multivariate function. Fix

ε ≤ 1
2n

a positive real number, and choose λ1, . . . ,λn positive and integrally independent. Set

δ ≥
�n

p=1 λp. Then, there exist univariate continuous functions χ : R → R and ψ : R → R,

such that for all x ∈ In,

f(x1, . . . , xn) =
2n�

q=0

χ

�
n�

p=1

λpψ(xp + εq) + δq

�
,

where the function ψ and choices of coefficients do not depend on the function f in question.

While Sprecher and Lorentz posed a significant reformulation of KST, they were by no

means the only mathematicians to do so. Hedberg and Kahane framed KST as a statement

concerning mappings between function spaces in the context of the Baire Category Theorem.

They reformulated Theorem 1.1.1 as follows (Hedberg [19]):

Theorem 2.2.2 (Hedberg and Kahane KST). Let Φ ⊂ C(I) be the set of continuous non-

decreasing functions on I such that ∀ψ ∈ Φ,

ψ(0) = 0 ψ(1) = 1.

Let λ1, . . . ,λn be rationally independent positive numbers, such that
�n

p=1 λp = 1. Then,

12

for quasi-all tuples (ψ1, . . . ,ψ2n+1) ∈ Φ2n+1, it follows that for any f ∈ C(In) : In → R

multivariate continuous function, there exists some continuous univariate function χ : I → R

such that

f(x1, . . . , xn) =
2n�

q=0

χ

�
n�

p=1

λpψq(xp)

�
.

This reformulation makes use of both Lorentz’s and Sprecher’s shifting and scaling ar-

guments; here, Hedberg explicitly requires the integral independence of the coefficients

λ1, . . . ,λn. This reformulation differs from Theorem 1.1.1 by expressing the inner func-

tions as a tuple in the function space Φ2n+1. Various properties of the space Φ make this

formulation amenable to tools in functional analysis, and turn KST into a tool in functional

analysis in and of itself. These functional analysis arguments are useful: they provide insight

into the properties that the inner and outer functions must satisfy as to enable a KST-style

representation. This version of this theorem highlights that for any given function f , KST

representation is not unique; quasi-all † nondecreasing continuous functions can be used as

part of a KST-style representation. The choice of these tuples of functions therefore plays

an important role in the definition of χ. I revisit this theorem as the basis for a geometric

characterization of KST in Chapter 5.

2.2.2 Improving Smoothness

While these reformulations were significant in advancing both the theory and computational

practicality of KST, they did not address the difficulty posed by the lack of smoothness of the

inner functions invoked in the superposition theorem. Sprecher proved that Kolmogorov’s

†A property holds for quasi-all points in a complete metric space X if it holds for every point in a
countable intersection of open dense sets in X.

13

original inner functions have derivative of zero almost everywhere (Kolmogorov [25], Sprecher

[39]). Despite this, Kolmogorov’s original construction yields inner functions that are only

Hölder continuous, with exponent log2n+2(2) (Sprecher [38]). This exponent relates funda-

mentally to the self-similarity that Kolmogorov used to define the spatial tiling needed to

complete his proof (Sprecher [40]); the construction of this spatial tiling is explained in sec-

tion 3.3. The lack of stronger continuity properties limits the usefulness of Kolmogorov’s

functions in computation, as computing values for Hölder continuous functions requires an

increasingly finer spatial resolution per unit of function accuracy. As a result, I avoid using

Hölder continuous functions in my construction, although this significantly complicates the

task of defining such functions algorithmically.

This issue of increasing computational burden per unit accuracy vanishes when the inner

functions are constructed to be Lipschitz continuous or smoother. Even before Kolmogorov

proved KST, it had been shown that such a representation was impossible if the functions

involved were continuously differentiable (Vitushkin [48], Vitushkin [47]), even if the mul-

tivariate function in question is analytic (Ostrowski [34]). However, Fridman later showed

that it was possible to construct a Lipschitz continuous inner function (Fridman [15]). To

do so, Fridman replaced the self-similarities in spatial tiling with a dynamic strategy. Using

this approach, Sprecher later extended his reduction of the number of inner functions from

2n2+n to one using the same shifting and scaling argument that he used in the Hölder case

(Sprecher [41]). Because the involved dynamic strategies are comparatively ad-hoc, to the

author’s knowledge, there have been no attempts to compute KST representations of func-

tions using Lipschitz inner functions, and the issue of increased computational burden for

computational KST remains. It is this task - constructing Lipschitz-continuous inner func-

14

tions for computational KST - that this thesis addresses; Chapter 4 is devoted to discussing

implementations of the strategy that Fridman proposed in [15].

2.3 Computational KST

There have been other attempts to construct computational schemes for KST representation,

albeit none known that use Lipschitz inner functions. In developing computational schemes, a

distinction emerged between those who maintain the exact representation properties of KST

(such as this work), and those who construct approximations of multivariate functions using

techniques and structures taken from KST. Techniques for the computation and analysis of

KST representation have been advanced by both approaches, and I utilize techniques from

each side to compute my Lipschitz KST functions. In the following subsections, I describe

attempts for exact KST computation and also several of the approximation schemes that

relate to KST.

2.3.1 Exact KST Computation

The first well-publicized algorithm for computing KST directly was developed by Sprecher,

after interest in KST was revived due to the theorem’s connection with neural networks;

see Section 2.4 (Sprecher [42], Sprecher [43]). These algorithms were motivated by taking

smart choices for Kolmogorov’s self-similar refinements, so that the inner function ψ could

be defined iteratively by assigning ψ(x) based on each digit in a decimal approximation of

a point x ∈ In. These decimal assignments were later corrected so that ψ stayed monotonic

at each stage of its iterative construction (Köppen [26]). A closed form of the Köppen’s

corrected inner function was later developed; while having a closed form helped to analyze

15

the computational complexity of ψ, it did not advance the computation of such a function

(Braun and Griebel, [7]). This closed-form analysis constitutes one of the few examples where

the provided functions meet the criteria of Kolmogorov’s constructed proof, thereby making

this analysis a useful blueprint for future work. I discuss how this closed-form analysis must

be adapted to be relevant in defining Lipschitz-continuous inner functions in Chapter 3.

However, neither closed form nor iterative definitions exist for Lipschitz-continuous inner

functions, which I discuss in greater detail in Section 3.3.

2.3.2 Approximations to KST Inner Functions

As these exact KST computations are complicated to define and difficult to execute, various

researchers have developed approximations of multivariate functions using KST, thereby

forgoing exact representation. These approximations are done by truncating the number of

iterations taken to define the inner function, and then constructing a spline that interpolates

the obtained function values. These approaches have the benefit of maintaining smoothness

while still having a KST-like structure.

For example, Coppejans describes conditions on the coefficients of cubic splines as to

enforce monotonicity (Coppejans [8]). With mildly stronger smoothness conditions on the

multivariate function f , this spline approximation for the KST functions requires only a

spline approximation of the univariate outer function, and therefore Coppejans claims to

require fewer point evaluations of f in evaluation, although the author does not provide any

computational results to support this claim.

Similarly, Igelnik and Parikh also approximate the inner function using splines, instead

using ninth degree splines with an assumption that the inner and outer functions are ap-

16

proximated by functions that are four times continuously differentiable (Igelnik and Parikh

[21]). The resulting spline approximation is then compared in structure to a single hidden

layer feed-forward neural network (see Subsection 2.3.3). With a comparable number of pa-

rameters, this spline network achieves an approximation error that is asymptotically better

than a standard neural network.

However, in both Coppejans’s and Igelnik and Parikh’s spline approximations, conver-

gence is achieved only as the number of knots in the spline approximations increases towards

infinity. It is unclear how these approaches are better than simply stopping Sprecher’s or

Köppen’s algorithms after a certain point, and in both cases, there are only theoretical guar-

antees on smoothness if we assume that our original function f is sufficiently smooth. As a

result, this thesis refrains from making a spline approximation and instead seeks to maintain

as exact a representation as possible.

2.3.3 Approximations using KST Structure

Even as computational power improved, KST mostly remained relegated to being a theoret-

ical tool due to the complexity of defining effective approximations to the inner and outer

functions. However, various other approximation methods, such as neural networks and ridge

functions, have developed by using the superposition framework of KST as justification for

their approximation properties. Many of these approximation are common, with substantial

literature describing their theory and performance. This literature is not discussed in the

rest of this thesis, although as ultimately these approximations are the standards to which

KST will be compared, they deserve to be mentioned in this section. This comparison will

only be fair once the problem of computing outer functions for Kolmogorov representation

17

is addressed, but this thesis does not focus on this task.

One of the original approximation schemes to use KST as its justification for its approx-

imation capabilities was neural networks. Feed-forward neural networks leverage the super-

position structure by replacing the inner function ψ in KST with some activation function,

and then compensating by taking extra terms in the sum in order to achieve approximation.

In this context, Hecht-Nielsen framed KST as an existence proof for a neural network that

approximates any continuous multivariate function. This approach leverages KST to obtain

the first proof of the Universal Approximation Theorem for neural networks (Hecht-Nielsen

[18]). Kŭrkova was later able to refine this construction as to specify how many neurons

were required in a single layer hidden feed-forward neural network (using a sigmoid acti-

vation function) to achieve arbitrary approximation accuracy (Kŭrkova [27]). While these

results are limited to neural networks with a single hidden layer, it is possible that this

underlying similarity between neural networks and KST can be used to characterize deeper

neural networks as well; the ability of deep networks to generalize better than shallower

neural networks still lacks a definite explanation. In this context, an algorithmic approach

to KST would be a useful tool for analyzing the theoretical representation capabilities of

neural networks. However, there is some skepticism as to the applicability of KST to actual

learning problems. For a given multivariate function f , KST does not effectively ‘learn’ the

outer function χ in KST from real-world data; it requires the evaluation of f at specific

points in the construction process (Girosi and Poggio [17]).

Another approximation scheme that uses a similar argument to simplify the functions

in KST is that of ridge functions. Ridge functions arise in many physics applications that

describe plane waves and other natural phenomena. This approximation relates to KST by

18

replacing each inner function with a linear kernel, resulting in the approximation

f(x) =
�

q

gq(Aqy),

where for x ∈ Rn, the matrices Aq are of size m × n with m << n, and then the functions

gq : Rm → R are chosen a priori often based on the physical application. If the functions

gq are all chosen to be identical, then the resulting approximation yields ridgelets; if gq are

chosen to be a neuronal activation function, this approximation reduces to a feed-forward

neural network. See [35] for a rigorous theoretical analysis. Although some techniques to

analyze ridge functions are applicable to KST, ridge functions will not be highlighted in the

rest of this thesis, as a comparison of the methods I present to ridge function approximations

requires the implementations of outer KST functions as well as inner functions.

2.4 Applications of KST

Many applications take advantage of these approximation schemes that take advantage of

KST. However, exact KST approaches to these problems have not become widespread, in

part because the lack of Lipschitz-continuous functions for exact representation makes com-

putation a burden using KST directly (Sprecher [44]). At its core, KST says that there

are no continuous multivariate functions other than addition and function composition; as a

result, encoding a function f by its outer function χ in a KST representation would consist

of a form of dimension reduction or function compression. Such a representation scheme,

of using the univariate analogues of multivariate functions, would represent a method to

break the Curse of Dimensionality, the phenomena in which if the dimension of a problem

19

increases, the quantity of data required to represent a function needs to grow exponentially

so as not to become sparse (Figueiredo [10], Bellman [4]). Towards this end, Figueiredo

describes three specific applications where KST could have substantial impact: circuit de-

sign, image compression, and statistical regression and estimation (Figueiredo [10]). With

each of these applications, algorithms to compute Lipschitz KST representations provide a

novel computational approach to solving the underlying multidimensional problems. These

applications all require an efficient method to compute the outer KST functions in addition

to Lipschitz inner functions, but since this thesis does not discuss how the outer functions

are computed, I do not implement any new attempts to solve these applications. In the rest

of this section, I describe how KST can be applied to each of hte applications mentioned

above.

Regarding circuit design, Figueiredo suggests to decompose a current variable with n

input variables into 2n+1 voltage controllers, one for each outer function, and then directly

constructs a voltage system to implement KST (Figueiredo [10]). Later works describe the

implementation of KST-style boolean gates for circuit design. Fewer of these KST boolean

gates are required, and they consume less power, making them ideal for applications in

nanoelectric circuits (Bern and Zawadzki [5]). However, it is unclear whether KST gates

are actually able to be constructed in a cost-efficient manner, and they are not currently in

practice.

The idea of using KST for multivariate function compression has also been explored in

the context of image analysis. Previous work has applied Igelnik and Parikh’s KST spline

approximation to image compression. By capturing the lower frequency terms of the outer

function approximation, a sample image was compressed by a peak signal-to-noise ratio

20

(PSNR) of above 30 db; the outer function approximation used approximately half of the

pixels in the original image (Leni et al. [28]). The authors suggest pairing this approach

with a wavelet decomposition, although to date there is no literature available that does so.

Third, Friedman and Stuetzle used the same structures as ridge functions to develop

projection-pursuit regression (Friedman and Stuetzle [16]), a statistical technique that esti-

mates a regression surface using sums of univariate unbiased estimators. Using this regres-

sion framework, it is possible to describe which functions defined as linear superpositions are

approximable using statistical regression (Diaconis and Shahshahani [12]). This approach

is favorable to compute, as it removes from consideration any second-order interaction ef-

fects; there are currently many forms of regression that make use of this approach, and this

approach is an active topic of research.

2.5 Unresolved and Related Questions

This thesis describes a new method to compute Lipschitz inner functions for KST. However,

before KST can be used extensively for application, many questions need to be answered,

incuding how to efficiently compute the outer functions in KST. Even though Kolmogorov

proved his seminal theorem in 1957, many open questions still surround Hilbert’s 13th prob-

lem. Regarding Hilbert’s 13th problem, it is still unknown if it is possible to represent the

solutions of a 7th degree polynomial in terms of algebraic expressions of three variables. As a

result, this Hilbert problem is considered only partially solved. The resolution of any of these

open problems would provide substantial benefit towards computing KST representations of

multivariate functions.

21

Kolmogorov’s theorem involves a very specific setup, requiring functions f to be contin-

uous and defined only on a compact domain. This was later extended to arbitrary domains

in Rn, including all of Rn, but requires twice as many functions (Doss [14], Demko [11]), and

was also extended to other metric spaces instead of separable Banach spaces (Ostrand [33]).

However, there are no algorithms that implement these cases, and it is unclear which com-

ponents of Kolmogorov’s original construction (and Sprecher’s reduction to only one inner

function) apply in this context.

Of similar note, it is unknown how to construct KST-style representations if one was to

add additional smoothness constraints to multivariate continuous functions, i.e. to consider

functions in Ck(In) in place of C(In). An early result by Vitushkin characterizes whether

superpositions are possible when done with smooth functions (Vitushkin [47]). He proved

that there is some f ∈ Ck(In) that cannot be represented by finite superpositions of functions

in Ck�(In
�

) if

n

k
>

n�

k�
. (2.3)

However, there are no known papers that use this statement for either approximation or ex-

act representation. Similar results could be used to represent functions of high-dimensional

spaces with analogous problems in lower-dimensional settings while maintaining some smooth-

ness, rendering unnecessary any concern over currently being only able to compute Hölder

or Lipschitz continuous KST representations.

Other problems to consider relate to approximation of discontinuous functions, such as

those in the function space Lp(In). Much work has been done towards this goal, both before

and after Kolmogorov’s original paper; see Khavinson [23] for more details. An important

22

result in the algorithmic approximation of discontinuous functions via superpositions is that

of Diliberto and Straus, which developed an algorithm to decompose bivariate functions in

L2(In) into sums using univariate functions (Diliberto and Straus [13]). Various improve-

ments have been noted since, such as extension to L1(In) and more recently to any algebra

of functions (Light [29], Asgarova et al. [3]). These advances in approximations and algo-

rithms for representations via composition could be used to create new approaches to KST,

potentially superseding the results of this thesis.

Various cases of determining the density of the set of functions given by superpositions

contained in common function spaces such as Lp(In) and C(In) are given in Sanguineti’s re-

view (Sanguineti [37]). Applications of these algorithms for functions in Lp(In) are important

for e.g. tomographic reconstruction, which can be viewed as calculating ridge functions in

Lp(In) along certain observed directions along an x-ray (Logan [30], Logan and Shepp [31]).

If algorithms for KST become better developed, the work in this thesis could be extended

to problems in this domain.

23

Chapter 3

Sufficient Conditions for Constructing KST Inner

Functions

This chapter establishes sufficient conditions for computing the inner functions of the Kol-

mogorov Superposition Theorem. These conditions constitute the theoretical and algorith-

mic framework for executing KST. In Section 3.1, I describe Kolmogorov’s initial sufficient

conditions for a constructive proof of KST. I then restate these conditions, with two substan-

tial changes. The first change, in Section 3.2, reduces the number of unique functions needed

for KST. This decreases the burden of KST from defining many functions to needing only

one inner function. The second update, in Section 3.3, proves that such a construction can

be adapted to produce Lipschitz continuous functions. Ultimately, the algorithm described

by this thesis in Chapter 4 and Chapter 5 will satisfy the conditions provided by this chapter.

I restate the Kolmogorov Superposition Theorem (KST), as given in Chapter 1.

Theorem 1.1.1 (KST). Let f ∈ C(In) : In → R be a continuous multivariate function.

There exist univariate continuous functions χq : I → R and ψp,q : R → R, where p = 1, . . . , n

and q = 0, . . . , 2n, such that for all x = (x1, . . . , xp) ∈ In,

f(x1, . . . , xn) =
2n�

q=0

χq

�
n�

p=1

ψp,q(xp)

�
. (1.1)

The functions ψp,q do not depend on the function f (Kolmogorov [25]).

24

3.1 Kolmogorov’s Original Conditions

This section reviews the sufficient conditions that Kolmogorov utilizes in his original proof

of KST (Kolmogorov [25]). These conditions are revisited in light of the improvements to

KST described in Section 3.2 and Section 3.3. Kolmogorov’s proof of KST is completed in

Appendix B.

Kolmogorov describes two fundamental conditions for KST in his original paper (Kol-

mogorov [25]). These conditions describe a suitable spatial partition of In, and they define

inner functions ψp,q in relation to these spatial partitions. Both the spatial partition and

the inner functions are defined iteratively; the superscript k ∈ N denotes the refinement

level of this iterative process. The superscript q ∈ {0, . . . , 2n} is an index for the outer sum

in Equation 1.1. Kolmogorov’s proof of KST requires a spatial partition for each index q,

which induces different inner functions ψp,q. The index p ∈ {1, . . . , n} always relates to the

pth coordinate direction.

The spatial partition provided by Kolmogorov describes sets Sk,q of n-dimensional squares

that nearly partition In. These sets are not complete partitions (hence the modifier ‘nearly’),

due to gaps between the squares that make the partition an incomplete covering of In. Each

set Sk,q is the n-fold Cartesian product of a set of intervals Tk,q that nearly partition the unit

interval I:

Sk,q =
n�

p=1

Tk,q. (3.1)

An example of such a spatial partition, formed by a Cartesian product, can be see in Figure

3.1.

25

S11 S21

S12 S22

T1

T2

T1 T2

0

1

0 1

Figure 3.1 : A set Sk,q that nearly partitions I2. Each square Sij ∈ Sk,q is the Cartesian
product of two intervals Sij = Ti × Tj where Ti, Tj ∈ Tk,q.

As k increases, the size of the intervals in Tk,q uniformly shrinks to 0. The sets Tk,q relate

to each other through the index q, which denotes a shift of a ‘prototype set’ Tk by a factor

of q times a fixed amount ε ∈
�
0, 1

2n

�
:

Tk,q = {T + qε : T ∈ Tk}. (3.2)

Addition here is pointwise addition for each point in a given set:

T + qε = {t+ qε : t ∈ T}. (3.3)

Kolmogorov places two conditions on the sets Sk,q. Kolmogorov’s first condition, the

More Than Half Condition, is a statement on the system of squares Sk,q for a given

refinement level k:

Condition 1 (More Than Half). For any x ∈ In, there are n + 1 values for q such that

26

x ∈ S for some square S ∈ Sk,q.

Kolmogorov’s second condition, the Disjoint Image Condition, relates the inner func-

tions ψp,q to the system of squares Sk,q. Define Ψq(x1, . . . , xn) =
�n

p=1 ψp,q(xp). For fixed

refinement level k and shift q, the condition is as follows.

Condition 2 (Disjoint Image). For any S1, S2 ∈ Sk,q,

Ψ
q(S1) ∩Ψ

q(S2) = ∅.

This condition is depicted in Figure 3.2.

S11 S21

S12 S22

Ψq(S11) Ψq(S21) Ψq(S12) Ψq(S22)
Ψq(R2) = R

Figure 3.2 : Sketch of set of squares Sk,q that satisfy the Disjoint Image Condition. Observe
that the image of each square Sij ∈ Sk,q under Ψq is disjoint, and that the image of each Sij

under Ψq are connected, since Ψq is a continuous function and Sij is a connected domain.

Before proceeding, it should be noted that it is indeed possible to satisfy these conditions

simultaneously. Kolmogorov explicitly constructs the set Sk,q; this explicit construction

27

is included in Kolmogorov’s proof in Appendix B. While Kolmogorov does not explicitly

construct the functions ψp,q, he provides two lemmas that guarantee that such functions

exist. These lemmas are explained in more detail in Appendix B. One of these lemmas,

which I refer to as the All But One Condition, is a sufficient condition for the More Than

Half Condition; as this lemma is important for later analysis, it is given here as well as in

the appendix.

Condition 3 (All But One). For any point x ∈ I, there are 2n values of q such that x ∈ T

for some T ∈ Tk,q.

An example of sets of intervals that satisfy this condition can be seen in Figure 3.3.

0 1
Tk,0
Tk,1
Tk,2
Tk,3
Tk,4

Figure 3.3 : Example of intervals Tk,q that satisfy the All But One Condition. Note that in
this construction, each line of intervals is a translation of the line below it; this translation
trick is a convenient method to make sure that the All But One Condition is satisfied,

although it is not necessary.

For fixed q, Kolmogorov’s sets of intervals Tk,q and Tk+1,q are related via self-similarity.

Kolmogorov mentions that the interval T k,q
i+1 is obtained from T k,q

i via a fixed translation,

T k,q
i+1 = T k,q

i +
1

(9n)k
.

The construction of Tk+1,q from Tk,q can be viewed as refining the intervals at level k via

28

scaling each T k,q
i down by a factor of 1

9n
and translating this mini-interval 9n times; this

process is seen in Figure 3.4. These aspects of self-similarity enable the construction of

Hölder continuous inner functions, which will be discussed in Section 3.3.

1
(9n)k

Tk,q

Tk+1,q

scale = 1
(9n)k

Figure 3.4 : Kolmogorov’s self-similar refinement for n = 2. Note that the fundamental
unit of the self-scaling includes both the interval and the gap to the right of the interval.

Kolmogorov uses the lemmas included in Appendix B to show inner functions are strictly

monotonic increasing. This provides the following condition on ψk,q and ψk:

Condition 4 (Monotonicity). The functions ψk,q are monotonic increasing. The functions

ψq are strictly monotonic increasing.

3.2 Sprecher’s Reduction

From a computational viewpoint, one of the difficulties in Kolmogorov’s proof of KST is

the necessity to define 2n2 + n individual functions ψp,q. Sprecher observed that by shifting

and scaling the set of intervals Tk,q, the number of inner functions could be reduced from

2n2+n to one (Sprecher [38]). This reduction and the accompanying proof that KST is still

viable even if only one inner function is used provide additional stipulations on Kolmogorov’s

conditions above.

29

At the core of the reduction from 2n2 + n inner functions ψp,q to one inner function ψ is

a scaling-and-shifting argument: in this reformulation, Kolmogorov’s functions ψp,q become

ψp,q(x) = λpψ(x+ qε). (3.4)

The scaling factors λ1, . . . ,λn are required to be integrally independent.

Definition (Integrally Independent). The scalars λ1, . . . ,λn are integrally independent

(alternatively, rationally independent), if for any rational numbers x1, . . . , xn ∈ Q,

If
n�

i=1

λixi = 0, then xi = 0 for i = 1, . . . , n. (3.5)

The integral independence of the scaling factors λ1, . . . ,λn enforces that the functions

Ψq(x1, . . . , xn) =
�n

p=1 λpψ(xp + qε) satisfy the Disjoint Image Condition.

The shift by a factor of qε in the argument of the function ψ in Equation 3.4 mirrors the

translation of the prototype set of intervals Tk to the translated sets Tk,q. As a result, the

domain of ψ is larger than that of ψp,q as to accommodate the translations by qε:

ψp,q : [0, 1] → R from Kolmogorov

ψ : [0, 2] → R from Sprecher.

(3.6)

In light of these changes, the Disjoint Image Condition becomes a statement relating

the function ψ and the set of intervals Tk at each refinement level k, given λ1, . . . ,λn inte-

grally independent positive real numbers, and ε ∈
�
0, 1

2n

�
. The updated Disjoint Image

Condition is as follows:

30

Condition 5 (Disjoint Image). For all q ∈ {0, . . . , 2n}, it holds that for any S1, S2 ∈ Sk,

for x(1) ∈ S1 and x(2) ∈ S2,

n�

p=1

λpψ(x
(1)
p + qε)

� n�

p=1

λpψ(x
(2)
p + qε) = ∅.

Sprecher’s precise reformulation of KST is given in Appendix C. As the proof of Sprecher’s

refinement requires a non-trivial introduction of notation and bookkeeping, the proof is not

repeated there. However, three primary objectives within Sprecher’s proof that relate to the

sufficient conditions for constructive KST are discussed in Appendix C. The complete proof

can be found in [38].

Sprecher’s proof is worthy of discussion because it gives some intuition for the construc-

tion of sets of intervals Tk and the inner function ψ that satisfy the All But One Condition

and the Disjoint Image Condition. In his verification that his inner function ψ satisfies the

Disjoint Image Condition, Sprecher constructs a set of disjoint intervals �k = {∆k
i }, where

for square Sk
i ∈ Sk, the interval ∆k

i ∈ �
k contains the image of Ψq(S

k
i). The Disjoint Image

Condition is met if the following, more conservative condition is satisfied at each refinement

level k; this condition is illustrated in Figure 3.5.

Condition 6 (Conservative Disjoint Image). For any intervals ∆k
i , ∆

k
i� ∈ �

k, where Ψq(Sk
i) ⊆

∆k
i and Ψq(Sk

i�) ⊆ ∆k
i�,

∆
k
i ∩∆

k
i� = ∅.

Sprecher’s method to enforce this condition is discussed in Appendix C. I revisit this

condition in greater detail during Chapter 4. Sprecher uses the sets �
k to analyze the

31

Sk
11 Sk

21

Sk
12 Sk

22

Ψq(Sk
11) Ψq(Sk

21) Ψq(Sk
12) Ψq(Sk

22)
Ψq(R2) = R

∆k
11 ∆k

21 ∆k
12 ∆k

22

Figure 3.5 : Sketch of the relationship between the sets Sk and �
k under the Conservative

Disjoint Image Condition. Compare to Figure 3.2; with the Cconservative Disjoint Image
Condition, the image intervals ∆k

ij envelope the intervals Ψq(Sk
ij). Since more space needs

to be allocated for the intervals ∆k
ij than Ψq(Sk

ij), they deemed more conservative, hence
the name of the condition.

smoothness properties of his function ψ. This is the subject of the next section.

3.3 Conditions for Improved Smoothness of the Inner Function

During his reformulation of KST in [38], Sprecher proves that his inner function ψ is Hölder

continuous.

Definition (Hölder). Let X and Y be normed metric spaces. A function ψ : X → Y is

Hölder continuous with exponent α if there is some constant c such that for any two

points x1, x2 ∈ X,

�ψ(x1)− ψ(x2)�Y ≤ c �x1 − x2�
α

X .

32

The regular distribution of intervals at refinement level k, and the uniform size of these

intervals, guarantee the Hölder continuity of the function ψ. Recall that for fixed q, Kol-

mogorov’s sets of intervals Tk,q and Tk+1,q are related via self-similarity, scaling by a factor

of 1
9n

and then creating 9n translated copies of the shrunken intervals. Sprecher’s proof

replaces the factor of 9n with the integer γ. This self-similarity enables the construction of

Hölder continuous inner functions. For verification that Sprecher’s function ψ is Hölder con-

tinuous, see Section C.3 or Sprecher’s original paper ([38]). As Kolmogorov’s construction

is similar, his inner functions ψp,q presumably can be chosen to be Hölder continuous. Yet,

Kolmogorov’s inner functions are not exactly specified, so it may be possible to construct

inner functions using Kolmogorov’s spatial decomposition that fail to be Hölder continuous;

see Appendix B for more details. It is thought that any near partition of I using a fixed self-

similar refinement scale will (at best) lead to a Hölder continuous inner function (Sprecher

[44]); such a relationship seems to have been been accepted in the early literature on KST

despite not being published anywhere to the author’s knowledge.

The reasoning for this thought, at least in the case of Sprecher’s construction, is as

follows. Sprecher defines his inner function ψ as the uniform limit of functions ψk. A sketch

of the relationship between ψk, ψ, and Tk is given in Figure 3.6. At each refinement level

k, these functions are constant on intervals in Tk and interpolate linearly between the gaps

between the intervals. In the limit as k → ∞, the functions ψ changes only minimally at

each refinement level: once a value has been assigned to the function ψk on an interval

T ∈ Tk, that value remains fixed at the left endpoint of T for all future functions ψk� during

refinement levels k� > k. As a result, the length of the gaps between intervals shrinks by

a factor of γ at each successive refinement level, but the function must jump between fixed

33

function values that are assigned at the left endpoints, and this jump does not contract by

a full factor of γ at each refinement level. Therefore, the slope of ψk on the gaps between

intervals increases by a factor proportional to γα for some power α > 1, resulting in a Hölder

continuous function. A rigorous version of this argument is presented in Section C.3.

However, Hölder continuous functions are of limited usefulness in computation. Comput-

ing values for functions that are only Hölder continuous requires an increasingly finer spatial

resolution per unit of function accuracy. For these functions, the ratio between evaluation

accuracy and storage complexity grows exponentially. As a result, this thesis constructs

inner functions that are smoother than Hölder continuous: the next smoothness class is that

of Lipschitz continuous functions.

Definition (Lipschitz). Let X and Y be normed metric spaces. A function ψ : X → Y is

Lipschitz continuous if there is some constant c such that for any two points x1, x2 ∈ X,

�ψ(x1)− ψ(x2)�Y ≤ c �x1 − x2�X .

The first (and to date, only) result that claims to constructively prove the existence of

Lipschitz continuous functions that suffice for KST is that of Fridman ([15]). Fridman’s Lip-

schitz result was later combined with Sprecher’s reduction in the number of inner functions,

resulting in the following restatement of KST (Sprecher [41]).

Theorem 3.3.1 (KST-Fridman). Let f ∈ C(In) : In → R be a continuous multivariate

function. Let λ1, . . . ,λn be integrally independent positive real numbers. Fix �ε ∈
�
0, 1

2n

�
.

There exist a rational number ε ≤ �ε and univariate continuous functions χq : I → R and

34

ψk

Tk

(a) Fixing values for ψk on left endpoints.

ψk

(b) Function ψk constant on intervals and linear on gaps between intervals.

ψk

ψ

(c) Function ψ changes only minimally from ψk while on intervals in Tk.

Figure 3.6 : Defining ψk during refinement level k. Note that for each k ∈ N, the function
ψk is contant on intervals and linear on gaps, where the values at the left endpoints of the
intervals are fixed and held constant for all k� > k. This process yields a final function ψ

that is differentiable almost everywhere, with derivative 0 almost everywhere, and not
differentiable on a dense set of points.

35

ψ : [0, 2] → R, where q = 0, . . . , 2n, such that for all x = (x1, . . . , xp) ∈ In,

f(x1, . . . , xn) =
2n�

q=0

χq

�
n�

p=1

λpψ(xp + qε)

�
. (3.7)

The function ψ, scalars λ1, . . . ,λn, and constant ε do not depend on the function f in

question. Additionally, the function ψ can be constructed to be Lipschitz continuous with

constant 1 (Sprecher [41]).

Fridman’s construction of the set of intervals Tk and of squares Sk is more complicated

than either Kolmogorov’s or Sprecher’s sets. Both Kolmogorov’s and Sprecher’s squares Sk,q

do not depend on the inner functions ψp,q. In a sense, the squares Sk,q and functions ψp,q

are independent: the squares can be defined at every refinement level before any of the

function values have been assigned to the inner functions. This is a convenient feature of

algorithms that construct Hölder continuous inner functions, but this independence does not

occur during the construction of Lipschitz continuous inner functions. To construct an inner

function ψ that is smoother than Hölder continuous, i.e. Lipschitz continuous, it is necessary

to abandon the fixed geometric refinement in going from Tk to Tk+1.

At refinement level k Fridman’s proof defines the set Tk dynamically as to ensure that

the All But One Condition is met, while keeping the slope of functions ψk bounded. In his

proof, Fridman breaks the largest intervals in Tk roughly in half by removing a segment that

contains the interval’s midpoint; this is illustrated in Figure 3.7. This breaking may cause

the All But One Condition to be violated at some point in the removed segment; this case

is illustrated in Figure 3.8a. To counter this, Fridman adds (before refinement) to the set

Tk an extra small interval that contains this problematic point, so that before breaking, the

36

k = 0

k = 1

k = 2

...
...

...
...

...

Figure 3.7 : Breaking intervals roughly in half. This breaking process is crucial to show
that the functions ψk converge.

point in question is contained in an interval T q ∈ Tk,q for every shift index q. Figure 3.8b

depicts an example of this process. With this addition, removing a sufficiently small segment

from any of the largest intervals will not violate the All But One condition. This approach

is what I call the Fridman Strategy, wihch I describe in Chapter 4. For more precise details,

see [15].

However, adding a small interval will cause the slope of ψk to increase on the gaps

surrounding the inserted interval, so this addition cannot be too large. This scenario is

reflected in Figure 3.9. The growth of the slope from these additional small segments is

controlled by the Bounded Slope Condition at refinement level k on the functions ψk:

Condition 7 (Bounded Slope). For any two points x1, x2 ∈ [0, 2],

|ψk(x1)− ψk(x2)| ≤ (1− 2−k)|x1 − x2|.

Fridman’s proof is given in its entirety in [15]. The dynamic construction of Tk is described

in [15]. As Fridman does not refine his intervals Tk geometrically, he explicitly states a

Refinement Condition in [15]:

Condition 8 (Refinement). With successive refinement, the length of intervals T ∈ Tk goes

37

ε = 1
4

q = 0

q = 1

q = 2

q = 3

q = 4

-1 0 1 2

X

(a) Any break at the point marked by the large X would cause the point X to
not belong to some interval for both q = 0 and q = 2.

ε = 1
4

q = 0

q = 1

q = 2

q = 3

q = 4

-1 0 1 2

X

(b) With the additional interval, the point X is now included for q = 2. Once
broken, X will not belong to an interval in the set q = 0, but this point is

possessed by some interval in all the other sets.

Figure 3.8 : Scenario in which it is necessary to add small segments to maintain the All
But One Condition. As adding these small segments increases the slope of the function

ψk+1 (see Figure 3.9), it is crucial to choose the segments sufficiently small.

38

ψk

ψk+1 from new interval

Figure 3.9 : Sketch of how size of plugs changes the slope of ψk. Note that larger plugs
correspond to a greater slope in the new function ψk+1.

to zero uniformly, i.e.

lim
k→∞

max
T∈Tk

|T | = 0.

Fridman’s strategy is presented in depth in Chapter 4, where two different algorithmic

approaches are given to meet the criteria from Fridman’s paper. See [15] for more details.

3.4 A Summary of Conditions

Before proceeding in Chapter 4 to discuss an algorithm to compute KST inner functions, I

review the sufficient conditions posed in this chapter.

3.4.1 Conditions on Spatial Decompositions

Conditions on the intervals Tk and squares Sk at refinement level k are the Refinement

Condition and the More Than Half Condition. By the Pidgeon Hole Principle, it is sufficient

to consider the All But One Condition instead of the More Than Half Condition.

Condition 8 (Refinement). With successive refinement, the length of intervals T ∈ Tk goes

to zero uniformly, i.e.

lim
k→∞

max
T∈Tk

|T | = 0.

39

Condition 1 (More Than Half). For any x ∈ In, there are n + 1 values for q such that

x ∈ S for some square S ∈ Sk,q.

Condition 3 (All But One). For any point x ∈ I, there are 2n values of q such that x ∈ T

for some T ∈ Tk,q.

3.4.2 Conditions on Function Values

Conditions on the functions ψ, ψk, Ψq, and Ψk,q at refinement level k for shift index q are

the Bounded Slope Condition, the Monotonicity Condition, and the Disjoint Image Condi-

tion, where the Bounded Slope condition ensures that the resulting functions are Lipschitz

continuous and the Monotonicity Condition enforces monotonicity. For intervals ∆k
i that

contain the image interval Ψq(Sk
i), it is sufficient to consider the Conservative Disjoint Im-

age Condition in place of the Disjoint Image Condition.

Condition 7 (Bounded Slope). For any two points x1, x2 ∈ [0, 2],

|ψk(x1)− ψk(x2)| ≤ (1− 2−k)|x1 − x2|.

Condition 4 (Monotonicity). The functions ψk,q are monotonic increasing. The functions

ψq are strictly monotonic increasing.

Condition 2 (Disjoint Image). For any S1, S2 ∈ Sk,q,

Ψ
q(S1) ∩Ψ

q(S2) = ∅.

40

Condition 6 (Conservative Disjoint Image). For any intervals ∆k
i , ∆

k
i� ∈ �

k, where Ψq(Sk
i) ⊆

∆k
i and Ψq(Sk

i�) ⊆ ∆k
i�,

∆
k
i ∩∆

k
i� = ∅.

41

Chapter 4

The Fridman Strategy

This chapter analyzes how Fridman constructs a Lipschitz inner function [15], and ultimately

concludes that Fridman’s approach is unlikely to succeed in creating a Lipschitz inner func-

tion that meets all of the conditions listed in Section 3.4. Section 4.1 reviews the conditions

that Fridman describes during his construction process. In Section 4.2 I pose an algorithm

that implements Fridman’s approach, and I prove that this algorithm satisfies Fridman’s

conditions but fails to satisfy the Disjoint Image Condition. In Section 4.3 I outline an

approach that is similar to Fridman’s paper that directly enforces the Conservative Disjoint

Image Condition, and I show that this approach sacrifices meeting the All But One Condi-

tion to do so. I therefore conclude that Fridman’s approach is not currently a viable method

to construct a Lipschitz inner function. As a result, I return in Chapter 5 to the theory

underlying KST to motivate a different approach to computing a Lipschitz inner function.

4.1 Characterization of the Fridman Strategy

Fridman’s approach to construct a Lipschitz continuous inner function was previously in-

troduced in Chapter 3. Fridman decomposes the unit interval I adaptively and iteratively,

creating a set of intervals Tk that meets the conditions listed previously. These conditions

are restated here; they are not unique to Fridman’s approach.

Condition 8 (Refinement). With successive refinement, the length of intervals T ∈ Tk goes

42

to zero uniformly, i.e.

lim
k→∞

max
T∈Tk

|T | = 0.

Condition 3 (All But One). For any point x ∈ I, there are 2n values of q such that x ∈ T

for some T ∈ Tk,q.

Fridman defines the functions ψk while generating Tk:

Condition 7 (Bounded Slope). For any two points x1, x2 ∈ [0, 2],

|ψk(x1)− ψk(x2)| ≤ (1− 2−k)|x1 − x2|.

Condition 4 (Monotonicity). The functions ψk,q are monotonic increasing. The functions

ψq are strictly monotonic increasing.

Condition 2 (Disjoint Image). For any S1, S2 ∈ Sk,q,

Ψ
q(S1) ∩Ψ

q(S2) = ∅.

Fridman’s overall strategy is characterized by iteratively breaking large intervals at suc-

cessive levels of refinement in order to enforce the Refinement Condition. Each iteration,

corresponding to a refinement level k ∈ N, proceeds as follows.

First, intervals are selected to be broken. Create these breaks by removing a gap that

includes the interval’s midpoint. However, if there is some shift index �q such that the

midpoint is not contained in any interval belonging to Tk,�q, creating a gap of any size causes

the midpoint to no longer be covered by at least 2n of the 2n+1 sets Tk,q, thereby violating

43

the All But One Condition. In this case, a small plug interval is added to Tk,�q. The width

of these plugs are determined by solving a block-diagonal linear system. Once these plugs

are added, every midpoint is contained in some interval (possibly a newly inserted plug) in

all 2n + 1 shifted copies of Tk,q. Therefore, if the gaps are chosen to be small enough, their

removal from the large intervals will not cause the All But One Condition to be violated.

Additionally, if the gaps are small enough, breaking one interval has no effect on other

intervals at the same refinement level.

The intervals Tk and functions ψk are constructed interatively over refinement level k ∈ N.

After initialization, the Fridman Strategy can be summarized as consisting of the following

steps at each refinement level k ∈ N:

1. Find Stage: Find the intervals T ∈ Tk that need to be broken.

2. Plug Stage: Determine whether the break points b ∈ T lies in all the shifted families

Tk,q, or all but one. If there is some shift �q such that for all T ∈ Tk,�q, the shifted point

b+ �qε /∈ T , then add the necessary small plug segment to into the set Tk,q.

3. Break Stage: Remove from T some small segment that includes the break point b,

thereby breaking T in half.

Choices made regarding the execution of these steps can cause substantial differences in

the resulting function. In the following sections, I describe algorithms that specify some

of the choices made for each of these stages. In Section 4.2, I describe an algorithm that

specifies choices for each of these stages in order to satisfy Fridman’s version of the Disjoint

Image Condition. This algorithm concretizes the steps Fridman makes in his original paper.

44

In contrast, the approach taken in Section 4.3 enforces the Conservative Disjoint Image Con-

dition instead. The ramifications of the distinctions between these two choices are discussed

at the end of this chapter.

4.2 The Fridman Strategy with Fridman’s Disjoint Image Condi-

tion

Before I delve into how Fridman executed each of the stages in the Fridman Strategy, I

describe the changes to the sufficient conditions that Fridman made in his original paper [15].

Fridman makes a subtle alteration to the Disjoint Image condition, compared to the version

described previously. Fridman’s original proof did not make use of Sprecher’s refinement to

require only one inner function, so the notation will change to include the q shift indices

where appropriate. The following discussion is valid when using Sprecher’s reduction, with

the appropriate shift in notation e.g. from Tk,q to Tk (Sprecher [41]).

Let ψk,p,q : I → R be a continuous, monotonic nondecreasing function, constant on

intervals in the set Tk,q and linear in between; this function is constructed in a manner similar

to Sprecher’s functions ψk but without making use of Sprecher’s reduction in the number

of needed inner functions. Fridman’s variant of the Disjoint Image Condition restricts the

image of the functions Ψk,q =
�n

p=1 ψ
k,p,q on the set of squares Sk,q at refinement level k

for any fixed shift index q. From its original statement, the condition is later relaxed to

ultimately read as follows [15]:

Condition 9 (Fridman’s Disjoint Image). There is some εk > 0 such that for any squares

S1, S2 ∈ Sk,q, the distance between the intervals Ψk,q(S1) and Ψk,q(S2) is larger than εk.

45

During his sketch of the three stages of the Fridman Strategy, Fridman chooses to en-

force this relaxed condition instead of Kolmogorov’s original Disjoint Image Condition. The

algorithm I present in Subsection 4.2.1 constructs sets of intervals Tk and functions ψk that

satisfy Fridman’s relaxed condition along with the other conditions repeated in Section 4.1.

4.2.1 Posing an Algorithm

Algorithm 1 outlines an implementation of the Fridman Strategy that satisfies the conditions

in Section 4.1, replacing the Disjoint Image Condition with Fridman’s variant. This algorithm

is defined to be robust to choices made during its computation, such as which intervals to

process first at a given refinement level. If this construction proceeds one interval at a time, it

is possible to create plugs or gaps in Tk,q that intersect with other plug or gaps for a different

shift index q� �= q of the same refinement level, thereby altering the function values assigned

during this stage of the construction. This concern is addressed by solving a linear system

that describes the size of the plugs. As a result, the algorithm is robust to a permutation of

the order in which it processes the intervals that need to be split during refinement level k.

Algorithm 1 presents pseudocode of this algorithm. Begin with ψ0 ≡ 0 and T0 =

{[−1, 1]}. Fix θ ∈ (0, 1), and fix ε = 1
2n
. As outlined in Section 4.1, each refinement level

k ∈ N consists of three primary stages:

1. Find Stage

2. Plug Stage

3. Break Stage

Each stage of this implementation is described in greater detail below; this algorithm is

46

analyzed in Section 4.2.5. Each refinement level k is considered subsequently. As a result

the k superscript is not emphasized in the following notation, and it has been removed

when the refinement level is apparent from the provided context∗. Omitting this superscript

declutters some of the notation that will be introduced later.

4.2.2 Find Stage

Finding which holes need plugs is straightforward. Take Tk and ψk as defined at refinement

level k ∈ N.

Denote the set of intervals to break as B ⊂ Tk, given by

B = {T ∈ Tk : |T | ≥ θk}.

For each T ∈ B, denote its midpoint by p = p(T). Let the set of break points be

P = {p(T) : T ∈ B}.

I define several sets that relate the interval T and its midpoint p to possible shifting indices

q ∈ {0, . . . , 2n}. These sets will be useful for the rest of this section. The dependence of

these sets on T is dropped when it is clear which interval is being considered.

Υ(T) = {T � ∈ Tk : ∃q ∈ {−2n, . . . , 2n} such that p(T) + qε ∈ T �}

Q(T) = {q ∈ {−2n, . . . , 2n} : ∃T � ∈ Tk such that p(T) + qε ∈ T �}

Qc(T) = {q ∈ {−2n, . . . , 2n} : ∀T � ∈ Tk, p(T) + qε /∈ T � yet p(T) + qε ∈ [−1, 1]}.

(4.1)

∗The exceptions to this rule for notation are the sets of intervals Tk and the functions ψk.

47

Algorithm 1 Fridman’s Lipschitz Construction

procedure Lip(n) � n spatial dimension

T ← {[−1, 1]} � Initialization
ψ0 ≡ 0
k = 0

while k < ∞ do

B ← {T ∈ Tk : |T | ≥ θk}

H ← ∅ � Find Stage
for T ∈ B do

p ← p(T)
Υ ← Υ(T)
Q ← Q(T)
Qc ← Qc(T)
if |Q| < 2n+ 1 then

for all �q ∈ Qc do

H ← H ∪ {H(T, �q)}

Π ← ∅ � Plug Stage
for all H ∈ H do

ν ← ν(H)
x ← C−1z
for i ∈ 0, . . . , ν − 1 do

πi ← [x2i, x2i+1]
ψk+1(πi) ← ψk(pi + �qiε)

Π ← Π ∪ {πi}i=0,...,ν−1

T ← T ∪ Π

for T ∈ B do � Break Stage
a, b ← T = [a, b]
ρ ← min{αρ+,αρ−, βδ+, βδ−}

T− ← [a, p(T)− ρ]
T+ ← [p(T) + ρ, b]
T ← T\{T} ∪ {T−, T+}
TN ← next interval after T
m ← max{1− 1

2k
, 1

2
(slope between interval T and TN)}

ψk+1(T−) ← ψk(T)
ψk+1(T+) ← ψk(T) + 2ρm

ψk+1 ← linearly connect values of ψk+1

48

The set Υ = Υ(T) ⊆ Tk marks the intervals in the shifted set Tk,q that contain the shifted

midpoint p + qε, where the shift index q ∈ {−2n, . . . , 2n}. The set Q = Q(T) is the set of

shift indices where such an interval exists. Note that

|Q| = |Υ|.

The set Qc is the complement of Q, in the sense that it denotes valid shift indices where such

an interval does not exist. However, it does not make sense to discuss possible shifts that

place the point p + qε outside of the interval [−1, 1], since every interval T � ∈ Tk ⊆ [−1, 1]

will fail to contain this point. Hence, these are excludeded from being in the complement

set.

X
0

X
1

X
2

X
3

X
4

X
-4

X
-3

X
-2

X
-1

T
p(T)

Tk

q

Figure 4.1 : Illustration of the set Qc. In this example the set Qc = {−4, 2}.

If |Q| < 2n+ 1, then the point p falls in a hole, i.e. there is some shift index �q such that

every interval in Tk,�q does not contain p. Therefore, if |Q| < 2n + 1, an additional small

interval must be added to Tk to ensure the All But One Condition is still met after a segment

of T is removed. Note that

2n+ 1− |Q| ≤ |Qc|,

and if |Q| = 2n + 1, then |Qc| = 0. For each shift �q ∈ Qc, an additional small interval must

49

be added; this interval must include the point p+ �qε. The hole into which this small interval

is added, i.e. the open interval containing p + �qε that is not included in Tk,�q, is denoted as

H = H(T, �q). Let H be the set of all holes to plug, that is,

H = {H(T, �q) : T ∈ B, �q ∈ Qc(T)}. (4.2)

In the case |Qc| > 1, a different hole H must be added to H for each shift index �q ∈ Qc. It is

feasible for a single hole H ∈ H to correspond to multiple points p(Ti) for Ti ∈ B. If there

are two intervals Ti, Ti� ∈ B such that both p(Ti) and p(Ti�) are contained in H, then H can

be written as

H = H(Ti, �qi) = (Ti� , �qi�).

For each H ∈ H, define the set �P (H) as

�P (H) = {p(T) : T ∈ B for which there is some �q ∈ Qc(T) such that p(T) + �qε ∈ H}.

Set the number ν = ν(H) = | �P (H)| as the number of points p(Ti) that have some shift index

qi ∈ Qc such that p(Ti) + qiε ∈ H, that is, the number of unique pairs (Ti, �qi) that can be

used to describe the same interval H.

4.2.3 Plug Stage

For each hole H ∈ H, proceed as follows. Denote the endpoints of H as H = (b0, aν+1),

where ν = ν(H). By construction, the function ψk is linear on H; denote its slope as m.

For each pi = p(Ti) ∈ �P (H(Ti, �qi)), construct a plug i.e. closed interval, denoted πi =

50

[ai, bi] ⊂ H, with 1 ≤ i ≤ ν. For each i,

pi + �qiε ∈ πi.

Each plug will be constructed as to be disjoint, that is, for indices i �= i�, that

πi ∩ πi� = ∅.

Additionally, the values of ψk+1 on each plug πi will be assigned so that ψk+1(πi) = ψk(�pi).

Between plugs on H, ψk+1 is forced to have slope �m = 1− 2−k−1, with m < �m.

These conditions on the plugs πi and the function ψk+1 are enforced by solving a linear

system that specifies the length of the plugs. For simplicity, define �pi = pi + qiε. Denote

f0 = ψk(b0)

fi = ψk(�pi) 1 ≤ i ≤ ν

fν+1 = ψk(aν+1).

(4.3)

The slope constraints provide ν + 1 equations

�m(ai − bi−1) = fi − fi−1 1 ≤ i ≤ ν + 1.

Since there are 2ν variables but ν+1 constraints, between each plug a symmetry constraint†

†Other constraints can be chosen.

51

b0 a1
�p1
b1 a2

�p2
b2 a3

f0

f1

f2

f3

Figure 4.2 : Sketch of scenario for finding two plugs, with ψk solid and ψk+1 dotted. Note
the symmetry constraint b1 − �p1 = �p2 − a2 is enforced.

is enforced on ψk+1, that

bi − �pi = �pi+1 − ai+1 1 ≤ i ≤ ν − 1.

Fig. 4.2 illustrates this setup in the case ν = 2.

52

This provides the linear equation Cx = z, where

ν + 1 slope equations





ν − 1 symmetry equations








�m

−�m �m
. . .

−�m �m

−�m

0 1 1 0

. . .

0 1 1 0




= C, (4.4)

ν + 1 slope equations





ν − 1 symmetry equations








f1 − f0

...

fν+1 − fν

�p1 + �p2
...

�pν−1 + �pν




+




�mb0

−�maν+1




= z (4.5)

53




a1

b1

...

ai

bi

...

aν

bν




= x. (4.6)

Permuting the rows of C creates a block diagonal matrix; since each block is invertible, C

is invertible, so a unique solution exists. Given ψk is monotonic increasing, the plugs πi are

well-defined and do not overlap. On each plug, assign function values

ψk+1(πi) = ψk(�pi).

For each H, add the plugs πi to Tk.

4.2.4 Break Stage

Recall the defintion of the set P, given as

P = {p ∈ T : T ∈ B}.

54

Also remember the definition of the set Υ,

Υ = {T � ∈ Tk : ∃q ∈ {−2n, . . . , 2n} such that p+ qε ∈ T �}.

At this point in the algorithm, for every point p ∈ P, the shifted point p+ qε belongs in

some interval T q ∈ Tk for every shift index q ∈ {−2n, . . . , 2n} such that p+ qε ∈ [−1, 1]. As

a result of the Plug Stage, the All But One condition is satisfied at points p ∈ P by ‘all’, not

‘all but one’, of the sets of shifted intervals. The gap, i.e. segment around p that is removed

from T , must be chosen to be small enough so that it is contained within T q for every shift

index q. This restriction enforces the All But One Condition at the rest of points that are

removed from T to break T in half.

Fix the constant scalar values α ∈ (0, 1) and β ∈
�
0, 1

2

�
; without any loss of generality,

assume α = 2/3 and β = 1/3. Denote the interval T corresponding to the break point

p = p(T) as T = [a, b]. Define the values ρ+ and ρ−, which dictate the farthest one can go

to the left or right of the point p while still being contained in T q for each shift index q.

Formally,

ρ+ = min
T q=[aq ,bq]∈Υ

(p+ qε)− aq

ρ− = min
T q=[aq ,bq]∈Υ

bq − (p+ qε)

To avoid creating gaps that overlap, the following distances are needed to constrain the

55

gap size:

δ+ = min
p̃∈P

q∈{−2n,...,2n}
q̃∈{−2n,...,2n}

{(p− qε)− (p̃− q̃ε) : p− qε > p̃− q̃ε}

δ− = min
p̃∈P

q∈{−2n,...,2n}
q̃∈{−2n,...,2n}

{(p̃− q̃ε)− (p− qε) : p− qε < p̃− q̃ε}

(4.7)

Set the break radius ρ as

ρ = min{αρ+, αρ−, βδ+, βδ−}. (4.8)

The gap G = G(p) is therefore given by

G = (p− ρ, p+ ρ).

By the choice of ρ, for all shift indices q, shifted copies of G are always contained in T q, that

is,

G+ qε ⊂ T q if T q − qε ∈ [−1, 1].

Remove G from T ; this act breaks T into two new intervals T− and T+, given by

T− = [a, p− ρ] T+ = [p+ ρ, b]. (4.9)

Therefore,

T = T− ∪G ∪ T+.

56

Let TN be the next interval greater than T . Assign function values to the new iterate

ψk+1 as follows.

ψk+1(T−) = ψk(T)

ψk+1(T+) = ψk(T) + η

(4.10)

where

η = min

�
2�mρ,

1

2
(ψk(TN)− ψk(T))

�
.

This choice of η enforces monotonicity, since every new value assigned to ψk+1 must lie

between the previous value ψk(T) and the next value ψk(TN) with η assigned as such.

By following this process to create gaps for every p ∈ P, every interval T ∈ B is broken

roughly in half. The set Tk+1 is therefore created from Tk by replacing every interval T ∈ B

with the intervals T− and T+ in its place.

These three stages are repeated iteratively for k ∈ N. Practically, this can be continued

until a finite machine tolerance has been reached. Therefore, this algorithm, which used the

Fridman Strategy to create a function that satisfies Fridman’s paper, is now complete. An

implementation of this algorithm in Python is presented in Appendix D; the result through

11 iterations is displayed in Figure 4.3. It remains to be shown that the output of this

algorithm satisfies the sufficient conditions for KST; this is proven in the next section.

57

−1.0 −0.5 0.0 0.5 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Figure 4.3 : Implementation of Fridman Strategy Algorithm for k = 11. Note that this
function is has slope bounded above by one, and is monotonic increasing.

4.2.5 Proof of the Algorithm

This section proves that the function defined by Algorithm 1 satisfies the conditions in Section

4.1, including Fridman’s Disjoint Image Condition, but not the Disjoint Image Condition

itself. I systematically prove that the resulting functions ψ and ψk, and the sets Tk, satisfy

each of the conditions above, proceeding in the order the conditions were repeated in Section

4.1.

Claim 1. For each refinement level k ∈ N, the set of intervals Tk satisfies the Refinement

Condition.

Proof. By construction, at refinement level k the size of the largest intervals are bounded by

θk, and since θ ∈ (0, 1),

lim
k→∞

θk = 0.

58

Claim 2. For each refinement level k ∈ N, the set of intervals Tk satisfies the All But One

Condition.

Proof. This proof is done by induction on k.

• Base Case: For each shift index q, the set of intervals T0,q consists of T0,q = {[−1 +

qε, 1 + qε]}. Fix x ∈ [0, 1]. Since ε ∈ (0, 1
2n
], for all shift indices q ∈ {0, . . . , 2n},

x ∈ [−1 + qε, 1 + qε].

Therefore, x ∈ I for every q.

• Inductive Step: Fix x ∈ [0, 1]. Suppose this claim holds true at point x through

refinement level k ∈ N. Then, it still holds true after adding plugs at refinement level

k, since nothing has been removed. Fix p ∈ P, and let G = G(p) be the gap containing

point p. By construction, for each shift index q ∈ {0, . . . , 2n}, there is some interval

T q ∈ Tk,q, possibly a newly added plug, such that G ⊂ T q. As ρ was chosen to be

less than δ− and δ+, any possible shift of G will not overlap with any other possible

gap G� = G(p�) being created at this refinement level. Therefore, every point in G is

contained by some interval within the shifted sets Tk+1,q for all shift indices q �= 0, and

every point not in G is either unaffected or has been plugged sufficiently so that it is

still covered by some interval (or plug) for at least 2n shift indices. Therefore, the All

But One Condition is satisfied.

59

Claim 3. At each refinement level k ∈ N, the function ψk is monotonic increasing and

satisfies the Bounded Slope Constraint.

Proof. Clearly, ψk is continuous at refinement level k ∈ N. It suffices to show the following

two lemmas.

Lemma 1. The function ψ = limk→∞ ψk is well-defined, with convergence in the sup norm.

Proof. Let Gk = {G(p) : p ∈ P} be the set of all gaps and Πk = {π : π plug added at step k}

be the set of all plugs. Since the only places ψk+1 differs from ψk are the gaps and plugs

created at refinement level k,

��ψk+1 − ψk
��
∞

≤ max

�
sup

G∈Gk+1

�mk|G|, sup
π∈Πk+1

�mk|π|

�

< sup
G∈Gk+1

|G|

< sup
T∈Tk

Diam(T)

≤ θk.

Therefore, by the Weierstrass M-test, the function ψ = limk→∞ converges, and

ψ = lim
k→∞

ψk − ψ0 = lim
k→∞

k�

j=1

ψj − ψj−1

is well-defined.

Lemma 2. Assume that ψk is monotonic increasing, constant on each interval T ∈ Tk, and

linear between such intervals with slope ≤ 1−2−k. Then, ψk+1 is also monotonic increasing,

constant on each interval T ∈ Tk+1, and linear between such intervals, with slope ≤ 1−2−k−1.

60

Proof. By construction, ψk+1 is constant on each interval T ∈ Tk+1; between such intervals,

the value of ψk+1 is given by linear interpolation. Let Gk be given as in the proof of the

previous lemma. For each gap G ∈ Gk formed between intervals from Tk+1, let T be the

interval to the left of G, and TN be to the right. Exactly one of the following three cases

must be true for each G:

1. The gap G existed between intervals T and TN at refinement level k.

2. At least one of T or TN is a plug created at this refinement level.

3. The gap G was created by breaking some interval in Bk.

In each case, ψk+1 maintains the desired properties:

1. ψk+1 does not differ from ψk onG, and thus by the inductive hypothesis, ψk+1 maintains

the desired properties.

2. From the construction of the linear system, on interval T , ψk+1(T) < ψk+1(TN), and

therefore ψk+1 is still monotonic increasing. From the choice of the size of G, the slope

of ψk+1 is set to m = 1− 2−k−1 on G.

3. Since ρ > 0 and ψk is monotonic increasing, η > 0, so ψk+1(T) < ψk+1(TN). The value

η was chosen so that the slope on g is

m =
η

2ρ
≤

1

2
< 1− 2−k−1.

Thus, the proof of this claim is concluded.

61

Corollary 1. The function ψ = limk→∞ ψk is Lipschitz continuous on [−1, 1] with Lipschitz

constant 1.

Claim 4. At refinement level k ∈ N, the function ψk satisfies Fridman’s Disjoint Image

Condition.

Proof. The constants λ1, . . . ,λn are integrally independent, and the values of ψk(T) are

rational for each T ∈ Tk. Therefore, for any two distinct multiindices i = (i1, . . . , in) and

i� = (i�1, . . . , i
�
n), the values of Ψ

k,q(Sk
i) and Ψk,q(Sk

i�) are distinct. As there are a finite number

of squares Sk
i ∈ Sk, choose εk > 0 as the smallest distance between the values of Ψk,q on

squares at refinement level k.

While the function ψ provided by this algorithm satisfies Fridman’s Disjoint Image Con-

dition, it does not satisfy the Disjoint Image Condition. This can clearly be seen numerically.

I implement this approach using the code in Appendix D through k = 9, and then I examine

the action of function Ψ7 on the set of squares S1 and S2. The sets Ψ9(S1) and Ψ9(S2) are

plotted in Figure 4.4 and Figure 4.5.

These images reveal that the subtle change from the Disjoint Image Condition to Frid-

man’s Disjoint Image Condition relaxes the requirement of maintaining disjoint images of

square under the function Ψq, to only examining the images of squares under the function

Ψk,q. Fridman’s condition is misleading: the function Ψk,q is constant on squares, so the

intervals Ψk,q(S1) and Ψk,q(S2) collapse to being points, which can be assumed to be ratio-

nal values i.e. in Q. Once Sprecher’s reduction is used, this condition is guaranteed to be

satisfied on the basis of Sprecher’s scaling factors λ1, . . . ,λn being integrally independent.

Therefore, Fridman’s Disjoint Image Condition does not sufficiently separate the images of

62

Figure 4.4 : Plot of Ψ9(S1). The tall lines demarcate the start of the image intervals;
without them, the overlap of the image intervals would not necessarily be visible. Note

that these image intervals clearly fail to be disjoint.

63

Figure 4.5 : Plot of Ψ9(S2). Again, the tall lines demarcate the start of the image intervals.
Due to the significant overlap, even only for the second level of refinement, it is difficult to

tell how many intervals overlap with each other; they are clearly not disjoint.

64

squares under Ψq.

As the Fridman Strategy is an integral component to Fridman’s proof, it is unclear

whether Fridman’s result is valid. Fortunately, it is possible to prove that KST inner func-

tions can be Lipschitz continuous using the proof supplied by Hedberg and Kahane that are

mentioned in Section 2.2 (Hedberg [19]). This proof will be discussed in greater detail in

Chapter 5; see [23] for a thorough explanation of this proof.

While Fridman’s weakened condition is not sufficient to show the Disjoint Image Condi-

tion, it is conceivable that the Fridman Strategy can still yield a Lipschitz continuous inner

function if the Disjoint Image condition is enforced somehow at each refinement level of

the construction. I do so in the next section by exploiting the Conservative Disjiont Image

Condition at each refinement level.

4.3 The Fridman Strategy with the Conservative Disjoint Image

Condition

In this section, I describe an alternative framework for the algorithmic computation of Lip-

schitz continuous inner functions for KST. This framework seeks to maintain the Fridman

Strategy, but it replaces the weaker Fridman’s Disjoint Image Condition with the Conser-

vative Disjoint Image Condition. The conservative image intervals are constructed using

the Lipschitz bound of the final function Ψ, as it is the only information known before the

construction begins. In Section 4.3.1, I describe the approach I take to ensure the conditions

listed in Section 3.4 are met. I then describe the execution of each stage in the Fridman

Strategy while meeting these conditions, taking care to specifically meet the Conservative

65

Disjoint Image Condition and the Bounded Slope Condition. This discussion ultimately es-

tablishes that for Fridman’s strategy to satsify the Conservative Disjoint Image Condition,

more than half of each interval must be removed, yet doing so would violate the All But

One Condition. This result therefore suggests that Fridman’s approach may not be viable

for computing a Lipschitz inner function. To rectify this concern, a fundamentally different

approach is outlined in Chapter 5.

4.3.1 Motivation for Using the Conservative Disjoint Image Condition

Consider the Conservative Disjoint Image Condition, restated here. Recall that this condition

enforces that the images of the squares Sk
i ∈ Sk under Ψq remain disjoint, and that this

condition does so by considering larger intervals ∆k
i such that Ψq(Sk

i) ⊆ ∆k
i , and then

enforcing that these larger intervals ∆k
i are disjoint instead.

Condition 6 (Conservative Disjoint Image). For any intervals ∆k
i , ∆

k
i� ∈ �

k, where Ψq(Sk
i) ⊆

∆k
i and Ψq(Sk

i�) ⊆ ∆k
i�,

∆
k
i ∩∆

k
i� = ∅.

If the values of ψk are fixed across refinement levels at the left endpoints of each in-

terval, and if the function ψk is maintained to be monotonic nondecreasing, the following

relationship holds between refinement levels and function values for any square Sk
i ∈ Sk at

refinement level k:

Ψ
k(Sk

i) ⊆ Ψ
k+1(Sk

i) ⊆ Ψ
k+2(Sk

i) ⊆ · · · ⊆ Ψ(Sk
i). (4.11)

66

In this relation, Ψk(Sk
i) is a constant (fixed at the lower left corner of sqaure Sk

i), but for

any k� > k, Ψk�(Sk
i) is possibly interval, since the square Sk

i may have been broken between

successive refinement levels and Ψk� would be linear on the induced gaps, not constant.

Therefore, the Conservative Disjoint Image Condition demands finding intervals ∆k
i such

that

Ψ(Sk) ⊂ ∆
k
i . (4.12)

If the interval ∆k
i is chosen minimally, so that

∆
k
i =

�
Ψ

k
i , lim

k�→∞
max
x∈Sk

i

Ψ
k�(x)

�
,

then the Conservative Disjoint Image Condition and the Disjoint Image Condition are iden-

tical. The quantity limk�→∞ maxx∈Sk
i

Ψk�(x) exists, as the domain Sk
i is fixed independent of

k�, and by definition limk�→∞ Ψk� = Ψ. However, at refinement level k, not much is known

about the function Ψ, and even less about the quantity limk�→∞ maxx∈Sk
i

Ψk�(x). Therefore,

such a minimal interval ∆k
i is hard to compute, and currently there is no method known to

find such intervals.

Instead, if the Bounded Slope Condition holds, then a Lipschitz constant for Ψk is known.

This Lipschitz constant is exploited to define the (non-minimal) intervals ∆k
i that allow for

the Conservative Disjoint Image Condition to be satisfied. The length of these intervals ∆k
i ,

the length of the break in T k
i , and the values of ψk need to be chosen as to maintain all of

the following conditions:

• Bounded Slope Condition;

67

• Monotonicity Condition;

• Conservative Disjoint Image Condition; and

• All But One Condition.

In the rest of this section, I outline how to construct intervals Tk, functions ψk, and sets

of intervals �
k = {∆k

i }i that satisfy these conditions, with particular focusing on meeting

the Conservative Disjoint Image Condition and the Bounded Slope Condition.

Like the previous algorithm, this approach uses the Fridman Strategy as a framework for

iterative refinement:

1. Find Stage: Find the intervals T ∈ Tk that need to be broken.

2. Plug Stage: Determine whether the break points p ∈ T lies in all the shifted families

Tk,q, or all but one. If there is some shift �q such that for all T ∈ Tk,�q, the shifted point

p+ �qε /∈ T , then add the necessary small plug segment to into the set Tk,q.

3. Break Stage: Remove from T some small segment that includes the break point p,

thereby breaking T in half.

While the previous algorithm crafted a linear system of equations to enforce conditions

during the Plug Stage, this approach forms a linear program to enforce conditions during

the Break Stage. Each of the three stages will now be described in greater detail.

Consider the constants λ1, . . . ,λn, introduced during Sprecher’s reduction from multiple

inner functions ψp,q to one inner function ψ. Order these constants so that λn > · · · > λ2 >

λ1. Set ε = 1
2n
. These constants will remain fixed throughout the construction. Begin with

T0 = {[−1, 1]} and ψ0 ≡ 0.

68

4.3.2 Find and Plug Stages

The Find Stage is identical to its counterpart in the previous algorithm, given in Section 4.2.2.

The Plug Stage is nearly the same to that in Section 4.2.3; however, the symmetry constraints

are relaxed from the Linear System and the slope equations are treated as inequalities instead.

These changes allow for the plugs to be created arbitrarily small. For small enough plugs,

the Conservative Disjoint Image Condition is guaranteed to be met, since the plugs are being

added precisely in areas of In such that the image of the plug under Ψq is centered in a gap

between ∆k
i intervals.

4.3.3 Break Stage

Suppose that the necessary plugs have been found and added into the set Tk, and the function

ψk has been suitably updated, so that all of the sufficient conditions have been met.

I explicitly consider the case n = 2, which benefits from the ability to draw precise

pictures. The case is similar for n > 2, but requires a significant amount of notation to be

introduced, and is therefore omitted. Each interval T k
i ∈ Bk, will be broken into left and

right intervals T k+1
i and T k+1

N , where the break point p ∈ T k
i yet p /∈ T k+1

i nor p /∈ T k+1
N .

The subscript i consecutively enumerates the intervals of Tk (not Bk), and the subscript N

denotes a new interval is being added.

For the rest of this section, the q superscript of functions ψq and Ψq, and of the iterates

ψk,q and Ψk,q will often be dropped, to declutter some of the notation.

Recall that for refinement levels k� ≥ k, the values of ψk� are fixed so that ψk� = ψk

on the left endpoints of intervals in Tk. Therefore, it is expedient to have the left half of

69

T k+1
i T k+1

N

Sk+1
ii

Sk+1
iN

Sk+1
Ni

Sk+1
NN

T k
i

Figure 4.6 : Setup of squares after breaking step k, thereby creating squares k + 1. Note
that the notation reflects which values are fixed to which squares during refinement: the
squares that maintain index i share the function value (for that coordinate direction) as
with its parent, whereas the squares with index N reflect a new value that has been

assigned.

the interval T k
i post-break maintain the same label, and to denote the new interval i.e. the

right half with the subscript N . Figure 4.6 is in accordance with this notation. After the

kth refinement level is complete, the intervals in Tk+1 are re-enumerated to accomodate the

increase in number of intervals, as to correspond to the new ordering. Additionally, having

the left endpoints fixed allows for the definition of the fixed constants ψk
i , given by

ψk
i = ψk(T k

i). (4.13)

These constants thereby define the constant values Ψk
i , given by

Ψ
k
i = Ψ

k(Sk
i) =

n�

p=1

λpψ
k
ip
. (4.14)

70

Let Θ : Sk → R be the variation of a square Sk
i ∈ Sk, defined as

Θ(Sk
i1,...,in

) =
n�

p=1

λp|T
k
ip
|.

Informally, Θ describes the maximum Ψ can vary over a given square, assuming the inner

function ψ is Lipschitz with constant 1. Note that for any two squares S and S�, if S ⊆ S �,

then

Θ(S) ≤ Θ(S �), (4.15)

with strict inequality if S is strictly containted in S�.

Define ∆k
i ⊂ R for a square Sk

i as

∆
k
i =

�
Ψ

k
i , Ψ

k
i +Θ(Sk

i)
�
.

With this definition,

Ψ(Sk
i) ⊆ ∆

k
i , and

lim
k�→∞

max
x∈Sk

i

Ψ(x) ≤ Ψ
k
i +Θ(Sk

i).

(4.16)

Recall that the Conservative Disjoint Image Condition states the following:

Condition 6 (Conservative Disjoint Image). For any intervals ∆k
i , ∆

k
i� ∈ �

k, where Ψq(Sk
i) ⊆

∆k
i and Ψq(Sk

i�) ⊆ ∆k
i�,

∆
k
i ∩∆

k
i� = ∅.

71

There are two ways to satisfy this condition:

∆
k
i < ∆

k
i� or ∆

k
i > ∆

k
i� . (4.17)

At first glance, enforcing the Conservative Disjoint Image Condition would require enu-

merating every square that is broken while going from refinement level k to refinement level

k+1, and checking that one of the two inequalities in Equation 4.17 is satisfied. For any one

interval Ti ∈ Bk, this could require checking that any square Sk+1
i ∈ Sk+1 whose multiindex

i includes the index i in any position. This formulation would require the solution of a large

mixed-integer program for each break made, with linear constraints to decribe bounds on

the values ψk+1
N , and binary constraints to enforce that one of the two inequalities holds from

Equation 4.17.

However, with care, it is not necessary to consider every square that shares the index

i. Using the fact that λ1 < λ2, the binary constraints can be removed, as the values

that Ψk+1 can achieve on the squares Sk+1
i are ordered. This reduction is shown in next

subsubsection. Moreover, assuming the Bounded Slope Condition and the Monotonicity

Condition are satisfied, it suffices to enforce the Conservative Disjoint Image Condition only

on squares that are split when due to breaking Ti ∈ Bk, i.e. squares who are formed by a

Cartesian product involving Ti. This result is shown in the subsubsection after next. These

claims enable the construction of a small linear program to construct function values ψk+1

and intervals Tk+1 that satisfy the Bounded Slope Condition, the Monotonicity Condition,

and the Conservative Disjoint Image Condition.

72

Removing the Binary Constraints

Using the fact that λ1 < λ2, the binary constraints can be removed, as the values that

Ψk+1 can achieve on the squares Sk+1
i are ordered. This reduction enables Claim 5; The

values ψk+1
i and ψk+1

N are sufficiently close if they allow for the Conservative Disjoint Image

Condition to be satisfied.

Claim 5. Let λ2 > λ1. Then, for ψk+1
N sufficiently close to ψk+1

i , we have

∆
k+1
iN > ∆

k+1
Ni .

Proof. By monotonicity, write ψk+1
N = ψk+1

i + θ for some θ > 0. Then,

λ1ψ
k+1
N + λ2ψ

k+1
i = λ1ψ

k+1
i + λ1θ + λ2ψ

k+1
i

< λ1ψ
k+1
i + λ2θ + λ2ψ

k+1
i

= λ1ψ
k+1
i + λ2ψ

k+1
N

since λ2 > λ1

by definition of ψk+1
N .

All of these functions are continuous, and the image of a connected domain (such as a square)

under a continuous function is connected. Therefore, if ψk+1
N is chosen so that

Ψ
k+1(Sk+1

Ni) +Θ(Sk+1
Ni) ≤ Ψ

k+1(Sk+1
iN),

then

∆
k+1
iN > ∆

k+1
Ni .

73

Reducing the Scope of Breaking Constraints

Let the square Sk+1 be formed by a break going from refinement level k to level k + 1. It is

necessary to show that the image of Sk+1 under Ψ does not intersect with the image of any

other square at that refinement level.

Claim 6. Suppose the Conservative Disjoint Image Condition is satisfied through refinement

level k, and suppose the interval T k
i ∈ Bk was broken into T k+1

i and T k+1
N , thereby defining

a new square Sk+1
i� and new conservative image interval ∆k+1

i� for some multiindex i�. If

∆
k+1
i� ⊆ ∆k

i , then for any other multiindex j at refinement level k, with j �= i, it holds that

∆
k+1
i� ∩∆

k
j = ∅.

Proof. By the Conservative Disjoint Image Condition, ∆k
i ∩∆k

j = ∅. As ∆k+1
i� ⊆ ∆k

i ,

∆
k+1
i� ∩∆

k
j = ∅.

This claim implies the following corollary.

Corollary 2. The Conservative Disjoint Image Condition holds if ∆k+1
i� ⊆ ∆k

i and ∆
k+1
i�

does not intersect any other ∆
k+1
i�� ⊂ ∆k

i .

Given this corollary, consider the following setup. Let i be the multiindex at refinement

level k all of whose entries are equal to i. Let i� and i�� be multiindices at refinement level

k + 1 that describe squares formed by breaking Sk
i . Additionally, let j be a multiindex at

74

refinement level k with at least one entry equal to i, but not all of whose entries are equal

to i. Let multiindices j� and j�� describe a squares at refinement level k + 1 formed from Sk
j

by breaking T k
i . Intuitively, the i-related multiindices relate to squares formed by directly

breaking a square Sk
i from refinement level k, one who was formed by a Cartesian product of

intervals all of whom were each sufficiently large to need refinement. For example, if Ti ∈ Tk

was large enough so that Ti ∈ Bk, one square Sk
i is formed by the n-fold Cartesian product

of Ti. In contrast, the j-related multiindices are squares that are casualties of breaking

Sk
i . Theses squares are formed by a Cartesian product involving one of the intervals that

was sufficiently large to require refinement. The breaks introduced when breaking Sk
i (that

is, breaking Ti) mean that Sk
j was broken as well, and therefore these squares need to be

considered as well.

As this section considers the case n = 2, there are only two entries per multiindex. Then,

i = (i, i) and either j = (j, i) or j = (i, j) for some index j �= i. In the setup of Figure 4.6,

there are four cases for the multiindices i� and i��: (i, i), (i, N), (N, i), and (N,N). Similarly,

there are two cases for j� and j�� for each option for j: (j, i), (j,N), (i, j), and (N, j).

To enforce the Conservative Disjoint Image Condition on all new squares by only consid-

ering what happens to square Sk
i , the following properties must be shown:

1. ∆
k+1
i� ⊆ ∆k

i .

2. ∆
k+1
j� ⊆ ∆k

j .

3. ∆
k+1
i� ∩∆

k+1
i�� = ∅.

4. ∆
k+1
j� ∩∆

k+1
j�� = ∅.

75

The first two of these are shown summarily below.

Claim 7. Suppose in the above setup, all conditions have been satisfied in construction

through refinement level k, and the Bounded Slope and Monotonicity Conditions hold for

refinement level k + 1. Then, for all multiindices i� listed above,

∆
k+1
i� ⊆ ∆

k
i .

Proof. It suffices to show that Ψk+1
i� ≥ Ψk

i and that Ψk+1
i� +Θ(Sk+1

i�) ≤ Ψk
i +Θ(Sk

i).

By monotonicity of the inner functions, Ψk+1
i� ≥ Ψk

i for all squares Sk+1
i� ⊆ Sk

i . For the

other side of the interval, the multiindex (N,N) is considered first; in this case, by the

definition of the variation Θ and the function Ψk+1,

Ψ
k+1
NN +Θ(Sk+1

NN) = (λ1 + λ2)
�
ψk+1
N + |T k+1

N |
�
. (4.18)

Having assumed the Bounded Slope Condition holds for ψk+1, the following inequality holds:

ψk+1
N ≤ ψk

i + (1− 2−(k+1))
�
|T k

i |− |T k+1
i |− |T k+1

N |
�

= |T k
i |− (2−(k+1))

�
|T k

i |− |T k+1
N |

�
− (1− 2−(k+1))|T k+1

i |.

(4.19)

76

Therefore,

Ψ
k+1
NN +Θ(Sk+1

NN) = (λ1 + λ2)
�
ψk+1
N + |T k+1

N |
�

≤ (λ1 + λ2)
�
ψk
i + (1− 2−(k+1))

�
|T k

i |− |T k+1
i |− |T k+1

N |
�
+ |T k+1

N |
�

= (λ1 + λ2)
�
ψk
i + |T k

i |
�

− (λ1 + λ2)(2
−(k+1))

�
|T k

i |− |T k+1
N |

�

− (λ1 + λ2)(1− 2−(k+1))|T k+1
i |

≤ (λ1 + λ2)
�
ψk
i + |T k

i |
�

= Ψ
k
ii +Θ(Sk

ii).

(4.20)

The same proof can be completed for the other three multiindices, using the steps above and

invoking monotonicity of ψk+1 where appropriate.

A similar result can be shown for the second claim.

Claim 8. Suppose in the above setup, all conditions have been satisfied in construction

through refinement level k, and the Bounded Slope and Monotonicity Conditions hold for

refinement level k + 1. Then, for multiindices j and j� listed above,

∆
k+1
j� ⊆ ∆

k
j .

Proof. By symmetry, it suffices to show ∆
k+1
ji , ∆k+1

jN ⊆ ∆k
ji.

First consider ∆k+1
ji ; it is wanted to show ∆

k+1
ji ⊆ ∆k

ji. Note that Ψk
ji = Ψ

k+1
ji since the

values of Ψk are fixed at the left endpoints of squares for all future k� > k, and k + 1 > k.

77

Additionally, recall that by Equation 4.15, since T k+1
i ⊂ T k

i , it holds that

Θ(Sk+1
ji) < Θ(Sk

ji).

Therefore,

Ψ
k+1
ji +Θ(Sk+1

ji) = Ψ
k
ji +Θ(Sk+1

ji)

≤ Ψ
k
ji +Θ(Sk

ji).

(4.21)

Thus, it holds that

∆
k+1
ji =

�
Ψ

k+1
ji , Ψ

k+1
ji +Θ(Sk+1

ji)

�

⊂

�
Ψ

k
ji, Ψ

k
ji +Θ(Sk

ji)

�

= ∆
k
ji.

Next consider ∆
k+1
jN ; it is wanted to show ∆

k+1
jN ⊆ ∆k

ji. By assumption, ψk+1 satisfies

the Bounded Slope constraint, and since the value of ψk are fixed at the left corners, the

following hold:

ψk+1
i = ψk

i

ψk+1
j = ψk

j

ψk+1
N ≤ ψk

i +
�
1− 2−(k+1)

� �
|T k

i |− |T k+1
i |− |T k+1

N

�
.

(4.22)

78

Observe that by monotonicity, ψk+1
N > ψk+1

i ; thus,

Ψ
k+1
jN = λ1ψ

k+1
j + λ2ψ

k+1
N

> λ1ψ
k+1
j + λ2ψ

k+1
i

= λ1ψ
k
j + λ2ψ

k
i by keeping values fixed on the left corners

= Ψ
k
jN .

(4.23)

By the definition of Θ,

Ψ
k+1
jN +Θ(Sk+1

jN) = λ1ψ
k+1
j + λ2ψ

k+1
N + λ1|T

k+1
j |+ λ2|T

k+1
N |

= λ1(ψ
k+1
j + |T k+1

j |) + λ2(ψ
k+1
N + |T k+1

N |).

(4.24)

Again, having assumed the Bounded Slope Condition holds,

ψk+1
N ≤ ψk

i + (1− 2−(k+1))
�
|T k

i |− |T k+1
i |− |T k+1

N |
�
. (4.25)

Therefore,

ψk+1
N + |T k+1

N | ≤ ψk
i +

�
1− 2−(k+1)

� �
|T k

i |− |T k+1
i |− |T k+1

N

�
+ |T k+1

N |

= ψk
i + |T k

i |− (2−(k+1))
�
|T k

i |− |T k+1
N |

�
−
�
1− 2−(k+1)

�
|T k+1

i |

< ψk
i + |T k

i |.

(4.26)

79

Combining Equation 4.24 and Equation 4.26,

Ψ
k+1
jN +Θ(Sk+1

jN) < λ1(ψ
k
j + |T k

j |) + λ2(ψ
k
i + |T k

i |)

= Ψ
k
ji +Θ(Sk

ji).

(4.27)

Therefore,

∆
k+1
jN =

�
Ψ

k+1
jN , Ψ

k+1
jN +Θ(Sk+1

jN)

�

⊂

�
Ψ

k
ji, Ψ

k+1
jN +Θ(Sk

ji)

�

⊂

�
Ψ

k
ji, Ψ

k
ji +Θ(Sk

ji)

�

= ∆
k
ji.

These two claims highlight that this breaking process creates a type fixed point iteration:

as the squares are refined, the image of each subsquare remains inside the image of its parent

square. This pattern is notable, since without these claims it could only be assumed that

the squares themselves were nested, not their images; it would otherwise have been possible

for the image sets of ∆k+1
i to spill beyond the image set of ∆k

i .

Of the four tasks listed listed on page 74 above, the third and fourth tasks are still

outstanding. These claims are resolved with the following statement:

Claim 9. Suppose in the above setup, all conditions have been satisfied in construction

through refinement level k, and the Bounded Slope and Monotonicity Conditions hold for

refinement level k+1. Then, for multiindices i�, i��, j�, and j�� as described above, the following

80

must be enforced directly:

∆
k+1
i� ∩∆

k+1
i�� = ∅, and

∆
k+1
j� ∩∆

k+1
j�� = ∅.

(4.28)

This claim can only be proven if the new image intervals at refinement level k + 1 are

chosen correctly. To make these choices that will directly enforce the statements in Equation

4.28, I construct a linear program. I focus first on the constraints related to i and i��. Due

to the ordering presented in Subsection 4.3.3, for λ2 > λ1, the following need to be enforced:

Ψ
k+1
ii +Θ(Sk+1

ii) ≤ Ψ
k+1
Ni

Ψ
k+1
Ni +Θ(Sk+1

Ni) ≤ Ψ
k+1
iN

Ψ
k+1
iN +Θ(Sk+1

iN) ≤ Ψ
k+1
NN .

(4.29)

These are equivalent to the following:

λ1ψ
k+1
i + λ2ψ

k+1
i + λ1|T

k+1
i |+ λ2|T

k+1
i | ≤ λ1ψ

k+1
N + λ2ψ

k+1
i

λ1ψ
k+1
N + λ2ψ

k+1
i + λ1|T

k+1
N |+ λ2|T

k+1
i | ≤ λ1ψ

k+1
i + λ2ψ

k+1
N

λ1ψ
k+1
i + λ2ψ

k+1
N + λ1|T

k+1
i |+ λ2|T

k+1
N | ≤ λ1ψ

k+1
N + λ2ψ

k+1
N .

(4.30)

After some cancellation and rearranging, and adding in the Bounded Slope Condition, I pose

the following linear program.

Claim 10. Let λ1, λ2, |T
k
i |, and ψk

i be fixed. Let �mk+1 be the maximal slope of ψk+1 under

the Bounded Slope Condition, that is, �mk+1 ≤ 1− 2−(k+1). Let x = (ρ, |T k+1
i |, |T k+1

N |, ψk+1
N),

81

where ρ is the size of the gap between T k+1
i and T k+1

N . Consider the following linear program:

min x1

subject to




0 λ1 + λ2 0 −λ1

0 λ2 λ1 λ1 − λ2

0 λ1 λ2 −λ1

−�mk+1 0 0 1

1 1 1 0

−1 −1 −1 0




x ≤




0

0

0

0

|T k
i |

−|T k
i |




(4.31)

Any feasible solution to this linear program satisfies the Bounded Slope Condition and the

Monotonicity Condition, and ∆
k+1
i� ∩∆

k+1
i�� = ∅ for the multiindices i� and i�� described previ-

ously.

A similar linear program can be constructed for the corresponding statement involving

the multiindices j and j�. Other objective functions can be chosen as well; what is important

is that these linear programs are feasible.

Once these linear programs have been solved, the break size ρ is determined. The set

Tk+1 is created by repeating this process for every T ∈ B, thereby breaking every interval as

to enforce the Refinement Condition. Doing so determines the function values for ψk+1
i on

the intervals Ti ∈ Tk+1, and interpolating linearly between the intervals at this refinement

level provides the definition of ψk+1 on the entire interval [−1, 1]. Therefore, the solution of

this linear program effectively completes the construction at this refinement level.

82

4.3.4 Implications

While the linear program given in Equation 4.31 characterizes the smallest break size, it is

possible to derive bounds on the minimal break size by considering the Conservative Disjoint

Image Condition and the Bounded Slope Condition. Independent of the solution of this linear

program, the size of ρ is bounded below by 1
2
|T k

i |.

Claim 11. The smallest possible break size ρ∗ is bounded below by 1
2
|T k

i |.

Proof. By the definition of ∆k
i , the following statements hold:

|∆k
ii| = (λ1 + λ2)|T

k
i |

|∆k+1
ii | = (λ1 + λ2)|T

k+1
i |

|∆k+1
Ni | = λ1|T

k+1
N |+ λ2|T

k+1
i |

|∆k+1
iN | = λ1|T

k+1
i |+ λ2|T

k+1
N |

|∆k+1
NN | = (λ1 + λ2)|T

k+1
N |.

(4.32)

By Claim 7, the last four of the above ∆
k+1
i� are contained in ∆k

i . If they do not intersect,

then

|∆k+1
ii |+ |∆k+1

Ni |+ |∆k+1
iN |+ |∆k+1

NN | ≤ |∆k
ii|. (4.33)

Substituting in the above definitions yields

2(λ1 + λ2)
�
|T k+1

i |+ |T k+1
N |

�
≤ (λ1 + λ2)|T

k
i |. (4.34)

83

Divide by λ1 + λ2. Using the definition of the gap size, that ρ = |T k
i |− |T k+1

i |+ |T k+1
N |,

2
�
|T k

i |− ρ
�
≤ |T k

i |. (4.35)

Therefore,

ρ ≥
1

2
|T k

i |. (4.36)

Removing more than half of the largest intervals at each refinement level guarantees that

the All But One condition will be violated. The size of the segment removed from T k
i needs

to be comparatively large to satisfy the Conservative Disjoint Image Condition, and it needs

to be sufficiently large to keep the increase in the slope of ψk+1 controlled, yet if too much of

T k
i is removed during the breaking process, there will be some point no longer contained in all

but one of the shifted families. In essence, the Conservative Disjoint Image Condition is too

conservative: this condition necessitates the creation of breaks that are large enough so that

all the conservative image intervals ∆
k+1
i can fit inside, but as a result the space allocated

for each of these conservative image intervals is too large for the All But One condition to

be satisfied.

This result suggests that when using Fridman’s general scheme, it is not possible to en-

force all three of the Conservative Disjoint Image Condition, the Bounded Slope Condition,

and the All But One Condition, while still resulting in a Lipschitz continuous inner func-

tion. Fridman’s initial algorithm demonstrates it is possible to enforce the Bounded Slope

Condition and the All But One Condition, and even a weak version of Fridman’s Disjoint

84

Image Condition, but not simultaneously the Disjoint Image Condition. This next attempt

satisfies the Disjoint Image Condition and the Bounded Slope Condition, but leaves no pos-

sibility to maintain the All But One Condition. The Disjoint Image Condition and the All

But One condition together, without the Bounded Slope Condition, results in the successful

construction of an inner function, but not a Lipschitz inner function. Fridman’s weakened

Disjoint Image Condition is too relaxed, while the Conservative Disjoint Image Condition is

too restrictive. The exact Disjoint Image Condition from Kolmogorov’s original paper is in

a ‘goldilocks’ zone: it allows for enough space between image intervals Ψq(Sk
ij) to ensure the

images of disjoint squares remain disjoint, while it restricts the amount of space they can

occupy so that the image intervals do not spread as to overlap as k → ∞. The Disjoint Image

Condition, and no condition stronger, nor any condition weaker, is needed for computing

KST inner functions. However, a dynamic construction of the intervals Tk provides no infor-

mation that can be exploited to guarantee disjoint images, whereas Sprecher’s approaches to

construct Hölder continuous inner functions can exploit the self-similarity in the definition

of Tk to define function values for the function ψk that obey the Disjoint Image Condition

itself (as exemplified in Appendix C).

I therefore conclude that Fridman’s paper needs to be reexamined, to determine whether

it is indeed possible to algorithmically construct a function using the method he outlines. Yet,

I emphasize that the conditions listed in Chapter 3 are sufficient conditions for computational

KST, and not necessary conditions; if it is somehow possible to use the Disjoint Image

Condition directly in the Fridman Strategy, then Fridman’s results may hold.

In the next chapter, I turn to Kahane and Hedberg’s proof of KST, and of their existence

proofs that KST is possible with Lipschitz inner functions. The Kahane and Hedberg formu-

85

lation of KST does not use the Fridman Strategy; an adaptation of this approach provides

a new foundation for computing Lipschitz continuous inner functions for KST.

86

Chapter 5

A Reparameterization Argument

The failure of approaches using the Fridman Strategy to construct Lipschitz continuous in-

ner functions suggested that Fridman’s original paper, which relied on the weaked Fridman’s

Disjoint Image Condition, may be flawed. As this paper supplied the initial proof that KST

is possible using Lipschitz continuous inner functions, it is reasonable to suspect that this

result is unattainable. Fortunately, Hedberg reformulated KST into a statement on quasi-all

2n+ 1-tuples of monotonic increasing continuous functions, and Kahane showed that under

this restatement of KST, the possibility of using Lipschtiz continuous inner functions follows

automatically, simply by reparameterizing non-Lipschitz inner functions (Hedberg [19], Ka-

hane [22]). As a result, I reparameterize the Hölder continuous inner function suggested by

Sprecher, corrected by Köppen, and analyzed by Braun and Griebel, to create a Lipschitz

inner function (Sprecher [42], [43]; Köppen [26]; Braun and Griebel [7]).

In this chapter, I revisit the work of Hedberg and Kahane to prove the existence of

Lipschitz continuous inner functions. In Section 5.1, I summarize Hedberg’s approach to

restate KST, and I describe Kahane’s arguments of how this reformulation guarantees that

Lipschitz inner functions can be used for KST. In Section 5.2, I describe Köppen’s inner

function in detail. This function is reparameterized in Section 5.3 to obtain a Lipschitz

inner function. Section 5.4 verify that the Hölder continous inner function remains an inner

function even after reparameterization.

87

5.1 Hedberg and Kahane’s Reformulation

Hedberg was the first to reformulate KST relying primarily on the Baire Category Theorem

(Hedberg [19]). Kahane later improved on this argument to provide a geometric interpre-

tation of KST (Kahane [22]). In this geometric framework, the existence of Lipschitz con-

tinuous inner functions follows naturally. In this section, I motivate Hedberg and Kahane’s

geometric approach, and I then demonstrate how Lipschitz inner functions are guaranteed

in this formulation.

5.1.1 A Geometric Interpretation of KST

In this subsection, I first repeat Kolmogorov’s statement of KST, and I then provide Hedberg

and Kahane’s reformulation of KST. As I compare these statements, I highlight how Hedberg

and Kahane enable the interpretation of the inner functions as defining a geometric curve in

2n+1-space. Much of this analysis was clearly communicated by Khavinson in his monograph

on approximate nomography (Khavinson [23]).

Neither Kolmogorov, Hedberg, nor Kahane utilize Sprecher’s reduction. For the rest of

this section, I revert to fully indexing the inner and outer functions with both the p and q

subscripts.

Recall Kolmogorov’s original statement of KST:

Theorem 1.1.1 (KST). Let f ∈ C(In) : In → R be a continuous multivariate function.

There exist univariate continuous functions χq : I → R and ψp,q : R → R, where p = 1, . . . , n

88

and q = 0, . . . , 2n, such that for all x = (x1, . . . , xp) ∈ In,

f(x1, . . . , xn) =
2n�

q=0

χq

�
n�

p=1

ψp,q(xp)

�
. (1.1)

The functions ψp,q do not depend on the function f (Kolmogorov [25]).

Also recall from Chapter 2 the original reformulation by Hedberg, also used by Kahane

(Hedberg [19]):

Theorem 2.2.2 (Hedberg and Kahane KST). Let Φ ⊂ C(I) be the set of continuous non-

decreasing functions on I such that ∀ψ ∈ Φ,

ψ(0) = 0 ψ(1) = 1.

Let λ1, . . . ,λn be rationally independent positive numbers, such that
�n

p=1 λp = 1. Then,

for quasi-all tuples (ψ1, . . . ,ψ2n+1) ∈ Φ2n+1, it follows that for any f ∈ C(In) : In → R

multivariate continuous function, there exists some continuous univariate function χ : I → R

such that

f(x1, . . . , xn) =
2n�

q=0

χ

�
n�

p=1

λpψq(xp)

�
.

As this statement is about quasi-all functions, I repeat the definition of this term here.

Definition. Let X be a complete metric space. A property holds for quasi-all points in X

if it holds on a countable intersection of open dense sets in X.

I also repeat the definition of integral independence.

89

Definition. A tuple λ = (λ1, . . . ,λn) ⊂ Rn is integrally independent (rationally inde-

pendent) if for any rational x ∈ Qn with x �= 0,

�λ, x� �= 0,

where �·, ·� denotes the �2 inner product.

Two examples of quasi-all sets are relevant to this discussion. First, quasi-all points on

the surface of a unit ball in Rn have integrally independent coordinates. Second, note that the

set Φ in Kahane and Hedberg’s reformulation, i.e. the closed subset of C[0, 1] of continuous,

monotonic nondecreasing functions, is a complete metric space; quasi-all functions in Φ are

strictly monotonic increasing.

Khavinson demonstrates how these two examples combine to construct tuples (φ0, . . . ,φ2n) ∈

Φ2n+1 that uniformly separate regular Borel measures on the unit cube [0, 1]n; for more de-

tails, see [23]. These tuples characterize a subspace Y ∈ C[0, 1] of outer functions that freely

interpolate minimally separated, nowhere dense set of points in [0, 1]n; the definition of freely

interpolating functions is given below.

Definition. Let Y ⊂ C[0, 1] and let E ⊆ [0, 1] be a closed subset. The subspace Y in-

terpolates freely on E if for each h ∈ C(E), there exists some χ ∈ Y such that for all

x ∈ E,

χ(x) = h(x).

Additionally, Y interpolates freely with constant c if for each h ∈ C(E) there is some

90

χ ∈ Y such that for all x ∈ E,

χ(x) = h(x), and �χ�C[0,1] ≤ c �h�C(E) .

Kahane and Hedberg observed that this property of free interpolation exactly character-

izes the outer functions for KST. They prove (and Khavinson restates) the following theorem

(Khavinson [23]).

Theorem 5.1.1. Let λ1, . . . ,λn be integrally independent; ordered, so that λ1 > λ2 > · · · >

λn; positive; and sum to one, i.e.
�n

p=1 λp = 1. Let Y ⊂ C([0, 1]) freely interpolate a nowhere

dense closed subset E ⊂ (0, 1) with constant c < 2n+2
2n+1

, and also freely interpolate with the

same constant all sets that are given as E with a finite number of points added from [0, 1]

to E. Then, quasi-all 2n+ 1-tuples of inner functions (ϕ0, . . . ,ϕ2n) ∈ Φ2n+1 allow for KST:

for any f ∈ C([0, 1]n) and any h ∈ C(E), there exists some χ ∈ Y such that

f(x1, . . . , xn) =
2n+1�

q=0

χ

�
n�

p=1

λpϕq(xp)

�
, (5.1)

and for any x ∈ E,

χ(x) = h(x).

This theorem readily admits a geometric interpretation. Let λ = (λ1, . . . ,λn) be an

n-tuple of coefficients from Theorem 5.1.1, and let ϕ = (ϕ0, . . . ,ϕ2n) ∈ Φ2n+1 be a tuple

that can be used for KST. Define a continuous embedding X : In → R2n+1 via the 2n + 1

91

continuous coordinate embeddings Xq : I
n → R given as

Xq(xp) =
n�

p=1

λpϕq(xp).

That is,

X = (X0, . . . , X2n).

Note that the image of [0, 1]n under X is compact, i.e. X([0, 1]n) = Γ ⊆ [0, 1]2n+1. It can be

shown that X is a homeomorphism. Under Theorem 5.1.1, any f ∈ C([0, 1]n) can be written

as

f(x1, . . . , xn) =
2n�

q=0

χ(Xq),

and the set of outer functions freely interpolate the compact set Γ. This geometric result, i.e.

the construction of the homeomorphism X that enables Theorem 5.1.1, improves upon the

Menger-Nöbeling Theorem, which implies any compact set in [0, 1]n can be homeomorphically

embedded in [0, 1]2n+1, by constructing an embedding that enables this free interpolation

property.

Kahane observed that because this homeomorphsim acts on quasi-all 2n + 1-tuples in

Φ2n+1, it suffices to consider the quasi-all set tuples in Φ2n+1 that are strictly increasing func-

tions (Kahane [22]). This strict monotonicity guarantees that the functions φq are rectifiable,

thereby providing the possibility of Lipschitz reparameterization. This reparameterization

is described in the next subsection.

92

5.1.2 Guarantee of Lipschitz Inner Functions

According to Kahane, Lipschitz inner functions are guaranteed to exist because any non-

Lipschitz KST inner function is rectifiable, and therefore can be reparameterized using a

Lipschitz reparameterization. This guarantee builds upon the geometric interpretation of

KST, by looking at the inner functions as describing curves in the set Γ, and then providing

a Lipschitz reparameterization of these curves.

Recall that quasi-all tuples (φ0, . . . ,φ2n) ∈ Φ2n+1 are strictly monotonic increasing.

Khavinson asserts that without loss of generality, a tuple of inner functions for KST is

strictly increasing. Fix q ∈ {0, . . . , 2n}. Define κ as the parameterized curve of the image of

Xq, that is, for t ∈ [0, 1], define

κ(t) = Xq = φq(t).

The curve κ is a rectifiable curve; the definition of such curves is given below.

Definition (Rectifiable Curve). Let ζ : [a, b] → C be a curve. Let P be the set of all

partitions of [a, b]; for any P ∈ P denote the partition elements as

a = t0 < t1 < · · · < t�−1 < t� = b.

The arc length of ζ, denoted by |ζ| is defined as

|ζ| = sup
P∈P

��

i=1

|ζ(ti)− ζ(ti−1)|.

The curve ζ is rectifiable if |ζ| is finite, i.e. the sum above converges.

93

A function is rectifiable if its image can be parameterized as a rectifiable curve. In this

case, view ζ : [a, b] → R; ζ is rectifiable if

|ζ| = sup
P∈P

��

i=1

�
(ti − ti−1)2 + (ζ(ti)− ζ(ti−1))2 < ∞.

The following theorem is the foundation of Kahane’s argument.

Theorem 5.1.2. A curve is rectifiable if and only if it admits a Lipschitz reparameterization.

Proof. A comprehensive proof is given in Sullivan [46].

Kahane makes the following statement about κ, and then concludes the following corol-

lary:

Claim 12. The curve κ is rectifiable.

Proof. Since φq is strictly monotonic increasing, it is of bounded variation, and therefore its

image κ is a rectifiable curve.

Corollary 3. The curve κ has a Lipschitz reparameterization.

Define σ as the parameterization of the arc length of κ, rescaled so that σ : [0, 1] → [0, 1]

by dividing by the total arc length of φq on the interval [0, 1]. Khavinson suggests that

reparameterization of κ by σ is the Lipschitz reparameterization required to convert the

inner function φq into a Lipschitz inner function; the function φq ◦ σ describes the same

curve κ as given by φq alone (Khavinson [23]). For a given f ∈ C([0, 1]n), it is thus possible

to instead consider a corresponding function F ∈ C(σ([0, 1])n) and represent F using KST

94

(x1, . . . , xn) (σ1, . . . , σn)

(X0, . . . , X2n)

[0, 1]n σ([0, 1])n = [0, 1]n

Γ

Figure 5.1 : Relationship of homeomorphisms that enable a Lipschitz reparameterization
of arbitrary KST inner functions. On the left are the coordinates as they are mapped

between each other, and on the right are the spaces characterized by the homeomorphisms
in question.

via

F (σ1, . . . , σn) =
2n�

q=0

χ

�
n�

p=1

λpφq(σp)

�
.

Therefore, given a non-Lipschitz inner function �ψ that satisfies Sprecher’s reduction, it is

possible to construct a Lipschitz inner function ψ from �ψ by considering the inverse map of

this reparameterization:

ψ = �ψ ◦ σ−1.

The relationship of the homeomorphisms that enable this representation are summarized in

Figure 5.1 (Khavinson [23]).

Approaching this problem computationally requires knowing any (possibly non-Lipschitz)

inner function, and I only need to parameterize its arclength to construct a Lipschitz inner

function. In Section 5.2, I provide a Hölder continuous inner KST function, and then in

Section 5.4 I verify that the Lipschitz reparameterization of this function is indeed an inner

function sufficient for KST, in accordance with the theory outlined in this section.

95

5.2 A Hölder Continuous Inner Function

In this section, I introduce a Hölder continuous inner function for KST. The following func-

tion �ψ was first proposed by Sprecher in [42] and [43]. It was later edited by Köppen in

[26] and analyzed by Braun and Griebel in [7]. After introducing this function, I highlight

a handful of properties that will be relevant for the reparameterization argument given by

Kahane ([22]).

Fix a radix γ ∈ N. Let Dk ⊂ [0, 1] be the numbers whose expansion in base γ terminate

at or before the kth digit. Any number d ∈ Dk can be expressed as

d = i0.i1i2, . . . , ik.

Similarly, set Dk can be written as

Dk = {
i

γk
: i = 0, . . . , γk}.

Define ε = 1
γ(γ−1)

.

Let the function β : N → N be

β(k) =
nk − 1

n− 1
. (5.2)

Define the set Rk as the set of the following intervals:

Rk =

��
i

γk
,

i

γk
+

γ − 1

γk+1

�
: i = 0, . . . , γk

�
.

96

With this definition, the intervals in the set Rk are disjoint.

The function �ψ is defined as the limit of a sequence of functions �ψk. For each k ∈ N, the

function �ψk is the piecewise linear interpolant of assigned values at points in the set Dk. For

dk = i0.i1, . . . , ik ∈ Dk, the function �ψk is defined as follows:

�ψk(dk) =





dk k = 1

�ψk−1
�
dk −

ik
γk

�
+ ik

γβ(k) k > 1 and ik �= γ − 1

1
2

�
�ψk
�
dk −

1
γk

�
+ �ψk−1

�
dk +

1
γk

��
k > 1 and ik = γ − 1

. (5.3)

This function �ψk can be extended from a domain of [0, 1] to all of R by assigning

�ψk(x) �→ �ψk(x− �x�) + �x�.

With this extension, the function �ψ : [0, 2] → R is a Hölder continuous inner function for

KST (Braun and Griebel [7]). The proof of this statement is not given here; see Braun and

Griebel’s paper for a thorough analysis. This function is plotted in Figure 5.2, using code

from Appendix E.

Kahane’s reparameterization observation will make use of a few properties: that �ψk → �ψ,

that �ψ is strictly monotonic increasing, and that �ψk and �ψ are rectifiable. I show each these

below.

Claim 13. The function �ψ = limk→∞
�ψk is well-defined, where convergence regards the

supremum norm.

Proof. This can be shown by a similar argument to the sketch previously given in Section

97

Figure 5.2 : Plots of Köppen’s �ψk for first few values of k. Note that the The functions �ψk

are self-similar at two alternating scales. For a more detailed analysis of this self-similarity,
see [26] and [7].

98

2.2, describing how Sprecher’s inner functions are Hölder continuous even with his reduction

from 2n2 + n inner functions to one. A more detailed version of Sprecher’s argument is in

Appendix C. The complete proof of this statement can be found in Braun and Griebel’s

analysis of Köppen’s inner function (Braun and Griebel [7]); compare to Sprecher’s analysis

in [38].

I next show the monotonicity of the functions in question.

Claim 14. The functions �ψk and �ψ are strictly monotonic increasing.

Proof. As the values of �ψk strictly increase with dk ∈ Dk, and the definition of �ψk is com-

pleted using linear interpolation, the function �ψk is strictly monotonic increasing.

Since �ψk → �ψ, the function �ψ is guaranteed to be monotonic increasing. It is necessary

to show that �ψ is strictly monotonic increasing. Fix x1, x2 ∈ [0, 1] such that x1 < x2. Then,

there exists some k ∈ N such that there are two numbers dk1 , dk2 ∈ Dk where

x1 < dk1 < dk2 < x2.

Then,

�ψ(x1) ≤ �ψ(dk1) ≤ �ψ(dk2) ≤ �ψ(x2).

Yet, by definition of �ψ and �ψk,

�ψ(dk1) = �ψk(dk1)

�ψ(dk2) = �ψk(dk2).

(5.4)

99

Therefore �ψ(dk1) < �ψ(dk2), which implies

�ψ(x1) < �ψ(x2).

I finally show that these functions are rectifiable.

Claim 15. The functions �ψ and �ψk are rectifiable.

Proof. Since �ψ and �ψk are strictly monotonic increasing, they are of bounded variation, and

therefore their images are rectifiable curves.

Having defined a Hölder continuous inner function, and having highlighted a few of its

properties, I turn to discussing the Lipschitz reparameterization of this inner function.

5.3 Reparameterization

Define the function �σ : [0, 1] → R as to measure the arclength of the function �ψ. Formally,

Let P(x) be the set of all partitions of the interval [0, x] for x ≤ 1; any partition P ∈ P(x)

can be written as P = {0 = t0 < t1 < · · · < t�−1 < t� = x}. Then, for �ψ : [0, 1] → [0, 1],

define �σ : [0, 1] → R as

�σ(x) = sup
P∈P(x)

��

i=1

�
(ti − ti−1)2 + (�ψ(ti)− �ψ(ti−1))2.

That �ψ is rectifiable guarantees that �σ is well-defined. However, it is of concern that �ψ is

defined as the limit of functions �ψk. Define �σk as the similarly-defined arclength function for

100

the function �ψk. It would be convenient if �σk → �σ as k → ∞; this is stated in the following

lemma.

Lemma 3. Suppose �ψk → �ψ uniformly as k → ∞, and suppose that �ψk and �ψ are continuous

and rectifiable. Moreover, assume �ψk(d) = �ψ(d) for d ∈ Dk. Let �σk measure the accumulated

arclength of �ψk, and �σ measure the accumlated arclength of �ψ. Then, �σk → �σ pointwise as

k → ∞.

Proof. For fixed k ∈ N, note that �σk is exactly equal to a polygonal approximation of the

curve �ψ, using the points d ∈ Dk as the vertices of the approximating polygon. By Propo-

sition 1.4 in Sullivan [46], as the maximal spacing between vertices of successive polygonal

approximations approaches zero, the length of the polygon approaches the length of the

curve it approximates. Therefore, �σk(x) → �σ(x) as k → ∞.

This lemma implies that for the sake of computation, it suffices to consider each computed

version of �ψk and compute its arclength, and use the limit of the arclength functions for �ψk

as the limit of the arclength of �ψ itself.

Next, rescale �σ to create a new function σ, so that

σ(x) =
�σ(x)
�σ(1) .

Define a new inner function ψ : [0, 1] → [0, 1] given by

ψ = �ψ ◦ σ−1.

101

With this definition, I make the following claim, as does Khavinson in [23]:

Claim 16. The reparameterization given by σ is the Lipschitz reparameterization.

That ψ is Lipschitz is suggested via the following computational argument. The function

ψ is computed by taking ψk = �ψk ◦ (σk)−1 as the refinement level k → ∞. The functions ψk

for k = 1, . . . , 5 are plotted in Figure 5.3 below, using code from Appendix E.

Figure 5.3 : Plots of ψk for first few values of k. Note that the slopes appear to all be
bounded, meaning that ψk is Lipschitz, and that they appear to converge uniformly as

k → ∞.

Figure 5.4 compares the reparameterized function ψ with the original function �ψ, both

constructed through 6 levels of refinement.

102

Figure 5.4 : Plot of �ψ6 and ψ6. Note that ψ6 has a much more controlled slope than �ψ6.
This makes sense, given ψ is Lipschitz continuous whereas �ψ is not.

103

Transform the set of intervals Rk into the set Tk, given as

Tk = {σ(R) : R ∈ Rk}.

With this reparameterization, I claim ψ is Lipschitz inner function for KST, corresponding

to the set of intervals Tk. I verify that ψ, the corresponding functions ψk = �ψk ◦ σ−1, and

the sets of intervals Tk satisfy the Sufficient KST conditions in the next section.

5.4 Verification of Sufficient Conditions for KST

Hedberg and Kahane’s proofs, which confirm KST can be done using Lipschitz inner func-

tions, do not make a statement on how the outer function is constructed. However, if the

reparameterized, Lipschitz inner function meets the sufficient conditions from Chapter 3,

then Kolmogorov’s proof of KST can be used for the construction of the outer functions.

Combined with a method that implements Kolmogorov’s outer function construction, this

reparameterization would constitute a complete approach to computing KST representations

of arbitrary multivariate continuous functions. In this section, I restate the conditions that

this reparameterization needs to meet, and I demonstrate that this function satisfies these

conditions. Regarding the Refinement Condition and the All But One Condition, the proofs

of these statements remain as future work; computational verification of these conditions is

presented instead.

Condition 8 (Refinement). With successive refinement, the length of intervals T ∈ Tk goes

to zero uniformly, i.e.

lim
k→∞

max
T∈Tk

|T | = 0.

104

Condition 3 (All But One). For any point x ∈ I, there are 2n values of q such that x ∈ T

for some T ∈ Tk,q.

Condition 7 (Bounded Slope). For any two points x1, x2 ∈ [0, 2],

|ψk(x1)− ψk(x2)| ≤ (1− 2−k)|x1 − x2|.

Condition 4 (Monotonicity). The functions ψk,q are monotonic increasing. The functions

ψq are strictly monotonic increasing.

Condition 2 (Disjoint Image). For any S1, S2 ∈ Sk,q,

Ψ
q(S1) ∩Ψ

q(S2) = ∅.

Claim 17. The set of intervals Tk meets the Refinement condition.

Proof. The completion of the proof remains as future work. An idea for this proof is to use

the fact that σ is of bounded variation (as it is strictly monotonic increasing and bounded)

in order to show that the size of any interval T = σ(R) ∈ Tk must get smaller as k → ∞.

The primary concern this proof must address is that the mapping σ is not ‘too bad’, in the

sense that σ does not distort sizes of specific intervals too greatly.

This claim can be verified computationally. Using the code presented in Appendix E to

compute ψ and σ in the case of n = 2, I track the length of the largest interval σ(R) for

R ∈ Rk, revealing the maximum sizes of intervals for levels k = 1, . . . , 8 in Figure 5.5

105

Figure 5.5 : Semilog plot of the largest interval sizes in Tk = σ(Rk) for the first few values
of k. Note that the largest interval size decreases at O(2−k); this trend suggests that the

Refinement Condition is met.

Figure 5.5 suggests that the size of the largest intervals in Tk roughly decrease by half

at each level of refinement. This refinement rate makes sense in the context of Fridman’s

paper, where the largest intervals are dynamically broken at each step, thereby creating

intervals roughly half the size of at the previous level. This trend suggests that the Fridman

Strategy has merit, if enough is known to enforce the Disjoint Image Condition instead

of a conservative, stronger condition. More work should be done to determine if a firm

comparison can be created between Fridman’s approach and Lipschitz reparameterization.

106

Claim 18. The set of intervals Tk meets the All But One condition.

Proof. The completion of this proof remains as future work. This claim should hold true:

since σ is of bounded variation, the size of the gaps between intervals in R cannot be altered

too greatly by σ. An ironclad proof of this claim could use the closed form of �ψ as given by

Braun and Griebel in [7] to define σ in a closed form, and then examine what σ does to the

points Dk for successive refinement levels k.

Again, this claim can be verified computationally. Using the code in Appendix E, I map

the shifted families Tk,q in the case n = 2 for the first few refinement levels, specifically

k = 1, 2. Higher values of k would be shown, but the lines are drawn to close together to be

distinguished in an image. These intervals are depicted in Figure 5.6 and Figure 5.7.

These figures seem to verify that, at least at the first two levels, the All But One Condition

is met. More work should be done to prove this result, using the known action of ψ on the

points Dk to determine the behavior of σ(d) for d ∈ Dk.

Claim 19. The functions ψk and ψ = limk→∞ ψk are monotonic increasing.

Proof. By the proof in Section 5.2, the functions �ψk and �ψ are strictly monotonic increasing.

As σ is a continuous homeomorphism of [0, 1] onto itself, it is strictly monotonic increasing,

and therefore σ−1 is strictly monotonic increasing as well. As the composition of strictly

monotonic increasing functions is also strictly monotonic increasing, the functions ψk and ψ

must satisfy this claim.

Claim 20. The function ψ is Lipschitz Continuous.

Proof. ψ is precisely the Lipschitz continuous reparameterization of �ψ.

107

(a) Shifted families of R1,q.

(b) Shifted families of T1,q = σ(R1,q).

Figure 5.6 : Shifted families of Tk = σ(Rk) for k = 1. Note that the breaks are located in
the same position for each set of intervals, with the breaks of σ(R1) smaller than that of R1

alone; thus, the All But One property is preserved.

108

(a) Shifted families of R2,q.

(b) Shifted families of T2,q = σ(R2,q).

Figure 5.7 : Shifted families of Tk = σ(Rk) for k = 2. Note that while the breaks are no
longer located in the same position for each set of intervals, the sizes of the breaks in T2

are smaller than that of R2; thus, the All But One property is preserved. Additionally, note
that the largest intervals are only roughly half the size of the those at the previous level of
refinement, demonstrating the comparative sharpness of the O(2k) bound presented in

Figure 5.5.

109

Claim 21. The function ψ satisfies the Disjoint Image Condition on Tk for each k ∈ N.

Proof. Fix k ∈ N. Braun and Griebel’s function statisfies the Disjoint Image Condition on

Rk. Therefore, for any R1, R2 ∈ Rk,

�ψ(R1) ∩ �ψ(R2) = ∅.

Fix T1, T2 ∈ Tk. There exist R1, R2 ∈ Rk such that

T1 = σ(R1)

T2 = σ(R2).

(5.5)

Then,

ψ(T1) = �ψ(σ−1(T1))

= �ψ(σ−1(σ(R1)))

= �ψ(R1), and

ψ(T2) = �ψ(σ−1(T2))

= �ψ(σ−1(σ(R2)))

= �ψ(R2).

(5.6)

Therefore,

ψ(T1) ∩ ψ(T2) = ∅.

110

Appendix A

Statement of Hilbert’s 13th Problem

Hilbert, at the second International Congress of Mathematicians in Paris, presented this

problem as the 13th of his 23 famous problems. These problems were later published by the

American Mathematical Society. The complete text of the problem is below (Hilbert [20]).

13. Impossibility of the solution of the general equations of the 7th degree by

means of functions of only two arguments.

Nomography deals with the problem: to solve equations by means of drawings

of families of curves depending on an arbitrary parameter. It is seen at once

that every root of an equation whose coefficients depend upon only two parame-

ters, that is, every function of two independent variables, can be represented in

manifold ways according to the principle lying at the foundation of nomography.

Further, a large class of functions of three or more variables can evidently be

represented by this principle alone without the use of variable elements, namely

all those which can be generated by forming first a function of two arguments,

then equating each of these arguments to a function of two arguments, next re-

placing each of those arguments in their turn by a function of two arguments,

and so on, regarding as admissible any finite number of insertions of functions of

two arguments. So, for example, every rational function of any number of argu-

111

ments belongs to this class of functions constructed by nomographic tables; for

it can be generated by the processes of addition, subtraction, multiplication and

division and each of these processes produces a function of only two arguments.

One sees easily that the roots of all equations which are solvable by radicals in

the natural realm of rationality belong to this class of functions; for here the ex-

traction of roots is adjoined to the four arithmetical operations and this, indeed,

presents a function of one argument only. Likewise the general equations of the

5th and 6th degrees are solvable by suitable nomographic tables; for, by means of

Tschirnhausen transformations, which require only extraction of roots, they can

be reduced to a form where the coefficients depend upon two parameters only.

Now it is probable that the root of the equation of the seventh degree is a function

of its coefficients which does not belong to this class of functions capable of

nomographic construction, i. e., that it cannot be constructed by a finite number

of insertions of functions of two arguments. In order to prove this, the proof would

be necessary that the equation of the seventh degree 7+xf 6+yf 2+zf 3+1 = 0 is

not solvable with the help of any continuous functions of only two arguments. I

may be allowed to add that I have satisfied myself by a rigorous process that there

exist analytical functions of three arguments x, y, z which cannot be obtained

by a finite chain of functions of only two arguments. By employing auxiliary

movable elements, nomography succeeds in constructing functions of more than

two arguments, as d’Ocagne has recently proved in the case of the equation of

the 7th degree.

112

Appendix B

Proof of the Kolmogorov Superposition Theorem

The Kolmogorov Superposition Theorem (KST) was first given by Kolmogorov in 1957 [25].

Theorem 1.1.1 (KST). Let f ∈ C(In) : In → R be a continuous multivariate function.

There exist univariate continuous functions χq : I → R and ψp,q : R → R, where p = 1, . . . , n

and q = 0, . . . , 2n, such that for all x = (x1, . . . , xp) ∈ In,

f(x1, . . . , xn) =
2n�

q=0

χq

�
n�

p=1

ψp,q(xp)

�
. (1.1)

The functions ψp,q do not depend on the function f (Kolmogorov [25]).

The proof of this theorem requires the construction of squares Sk,q and functions ψp,q

that meet the following two conditions:

Condition 1 (More Than Half). For any x ∈ In, there are n + 1 values for q such that

x ∈ S for some square S ∈ Sk,q.

Condition 2 (Disjoint Image). For any S1, S2 ∈ Sk,q,

Ψ
q(S1) ∩Ψ

q(S2) = ∅.

113

These conditions are explained more extensively in Section 3.1. Suppose systems of

squares Sk,q and functions ψp,q meet the More Than Half Condition and the Disjoint Image

Condition. With these conditions met, Kolmogorov completes an iterative construction of

the outer functions χq using approximates χk
q . These functions χk

q approximate f on the

image of each square S ∈ Sk,q under the map Ψq. As k → ∞, the functions χk
q → χq

uniformly.

Proof. Let the shift index q range from q = 0, . . . , 2n. At each refinement level k, let the

index i range from i = 1, . . . , (9n)k + 1. For each index i, define the interval T k,q
i ⊂ I as

T k,q
i =

�
1

(9n)k

�
i− 1−

q

3n

�
,

1

(9n)k

�
i−

1

3n
−

q

3n

��
. (B.1)

Define the set Tk,q as

Tk,q = {T k,q
i : i = 1, . . . , (9n)k + 1}. (B.2)

This definition is analogous to that in Equation 3.2, where ε = 1
3n
. This set Tk,q satisfies the

All But One Condition, which implies the More Than Half Condition by the Pigeon Hole

Principle.

Condition 3 (All But One). For any point x ∈ I, there are 2n values of q such that x ∈ T

for some T ∈ Tk,q.

As the set Tk is constructed (and thus Tk,q and Sk,q), the inner functions ψp,q are defined

concurrently, using Lemma 4 and Lemma 5.

114

Lemma 4. Let k range the natural numbers N. Let i enumerate the intervals in the set Tk,q,

and let i = (i1, . . . , in) be a multiindex that enumerates the squares in the set Sk,q =
�n

p=1 T
k,q.

There exist constants �k and ψ
k,p,q
i such that the following conditions hold:

1. ψ
k,p,q
i < ψ

k,p,q
i+1 ≤ ψ

k,p,q
i + 1

2k
.

2. Choose T k,q
i ∈ Tk,q and T k+1,q

i� ∈ Tk+1,q. If T k,q
i and T k+1,q

i� do not intersect, then

ψ
k,p,q
i ≤ ψ

k+1,p,q
i� ≤ ψ

k,p,q
i + �k − �k+1.

3. For fixed q and k, the closed intervals ∆
k,q
i =

��n

p=1 ψ
k,p,q
ip

,
�n

p=1 ψ
k,p,q
ip

+ n�k

�
are

pairwise disjoint.

4. �k ≤
1
2k
.

The values assigned in Lemma 4 directly define functions ψp,q:

Lemma 5. Let values ψ
k,p,q
i and �k satisfy Lemma 4. For each T k,q

i ∈ Tk,q and for each

x ∈ T k,q
i , define ψp,q(x) pointwise so that for all k ∈ N,

ψ
k,p,q
i ≤ ψp,q(x) ≤ ψ

k,p,q
i + �k.

The function ψp,q is well-defined, continuous, and monotonic increasing.

Lemmas 4 and Lemma 5 together prove that Kolmogorov’s functions ψp,q meet the Dis-

joint Image Condition. Kolmogorov does not define the constants ψk,p,q
i , nor does he give any

direction towards the systematic choice these values, but he does state that the assignment

of values in accordance with Lemma 4 can be accomplished by induction. Arnold completes

115

the first few steps of this process for n = 2, as does Tikhomirov (Arnold [2], Tikhomirov

[49]).

The proof continues as follows. Suppose systems of squares Sk,q and functions ψp,q are

constructed as to meet the More Than Half Condition and the Disjoint Image Condition.

The functions χq are constructed as

χq = lim
r→∞

χr
q,

where χ0
q ≡ 0 and χr

q is defined by induction on r ∈ N. This induction index r relates to

refinement level kr ∈ N from the construction of the system of squares Sk,q. Define

fr(x) =
2n�

q=0

χr
q (Ψ

q(x)) , Mr = �f − fr�∞ .

For the base case r = 0, set f0 ≡ 0 and M0 = �f�∞.

For the inductive step, suppose a continuous function χr−1
q has been constructed, and in

the inductive process an index kr−1 ∈ N and a continuous function fr−1 have been defined.

Let ω(S) equal the oscillation of f − fr−1 on square S ∈ Skr,q. Choose kr ∈ N such that for

all S ∈ Skr,q,

ω(S) ≤
1

2n+ 2
Mr−1. (B.3)

Let ξ ∈ S denote the lower left corner of S. For y ∈ Ψq(S) ⊂ R, define

χr
q(y) = χr−1

q (y) +
1

n+ 1
[f(ξ)− fr−1(ξ)] . (B.4)

116

Rearrange Equation B.4 and take the norm of each side; then, for χr
q, χ

r−1
q restricted to

Ψq(S),

��χr
q − χr−1

q

��
∞

≤
1

n+ 1
Mr−1. (B.5)

Outside of Ψq(S), define χr
q as to maintain continuity and so that

��χr
q − χr−1

q

��
∞

≤ 1
n+1

Mr−1.

Such a a definition of χr
q is guaranteed to exist by the Tietze Extension Theorem.

Fix x ∈ In. Recall from the definition of fr,

fr−1(x) =
2n�

q=0

χr−1
q (Ψq(x))

fr(x) =
2n�

q=0

χr
q (Ψ

q(x)) .

(B.6)

Adding and subtracting fr−1 to f − fr yields the relation

f(x)− fr(x) = f(x)− fr(x) +

�
fr−1(x)−

2n�

q=0

χr−1
q (Ψq(x))

�

= f(x)− fr−1(x)−
2n�

q=0

χr
q (Ψ

q(x))− χr−1
q (Ψq(x)) .

(B.7)

The sum in Equation B.7 is split in relation to More Than Half Condition. Denote Q =

{0, . . . , 2n}, and define the sets

Q1 =
�
q ∈ Q | x ∈ Sq for some Sq ∈ Skr,q

�

Q2 = Q\Q1.

(B.8)

By More Than Half Condition, |Q1| = n+ 1, |Q2| = n. There are different sup norm bounds

for χkr
q depending on whether q ∈ Q1 or q ∈ Q2. For q ∈ Q1, let Sq be the square in Skr,q

117

that contains the point x. Then,

χr
q (Ψ

q(x))− χr−1
q (Ψq(x)) =

1

n+ 1
[f(ξ)− fr−1(ξ)]

=
1

n+ 1
[f(x)− fr−1(x)] +

ω

n+ 1
,

(B.9)

where ω is given by the expression

ω = (f(ξ)− fr−1(ξ))− (f(x)− fr−1(x)) . (B.10)

By the above Equation B.3,

|ω| ≤ ω(Sq) =
1

2n+ 2
Mr−1.

For q ∈ Q2, recall the prior estimate in Equation B.5,

��χr
q − χr−1

q

��
∞

≤
1

n+ 1
Mr−1.

118

Split the sum in Equation B.7, and substitute in Equation B.9 in the sum over Q1. Then,

f(x)− fr(x) = f(x)− fr−1(x) −
2n�

q=0

χr
q (Ψ

q(x))− χr−1
q (Ψq(x))

= f(x)− fr−1(x) −
�

q∈Q1

�
χr
q (Ψ

q(x))− χr−1
q (Ψq(x))

�

−
�

q∈Q2

�
χr
q (Ψ

q(x))− χr−1
q (Ψq(x))

�

= f(x)− fr(x) −
�

q∈Q1

�
1

n+ 1
[f(x)− fr−1(x)] +

ω

n+ 1

�

−
�

q∈Q2

�
χr
q (Ψ

q(x))− χr−1
q (Ψq(x))

�

= −
�

q∈Q1

ω
n+1

−
�

q∈Q2

�
χr
q (Ψ

q(x))− χr−1
q (Ψq(x))

�
.

Take the sup norm of the above equation:

�f − fr�∞ ≤
1

n+ 1

�

q∈Q1

|ω|+
�

q∈Q2

��χr
q − χr−1

q

��
∞

≤
1

2n+ 2
Mr−1 +

n

n+ 1
Mr−1

=

�
2n+ 1

2n+ 2

�
Mr−1.

Therefore,

Mr ≤

�
2n+ 1

2n+ 2

�
Mr−1

Mr ≤

�
2n+ 1

2n+ 2

�r

M0.

(B.11)

Since for all 0 ≤ q ≤ 2n,

��χr
q − χr−1

q

��
∞

≤
1

n+ 1
Mr−1,

119

the sequence {χr
q}r∈N is a Cauchy sequence and therefore converges. Therefore, the function

χq = limr→∞ χr
q is well-defined and continuous. Since Mr → 0 as r → ∞, fr → f . Therefore,

f(x) = lim
r→∞

fr(x) = lim
r→∞

2n�

q=0

χr
q (Ψ

q(x)) =
2n�

q=0

χq (Ψ
q(x)) . (B.12)

Thus the proof of KST is complete.

120

Appendix C

Three Aspects of Sprecher’s KST Reformulation

Sprecher stated the following improvement of the Kolmogorov Superposition Theorem in

1965 [38]:

Theorem C.0.1 (KST-Sprecher). Let f ∈ C(In) : In → R be a continuous multivariate

function. Let λ1, . . . ,λn be integrally independent positive real numbers. Fix �ε ∈
�
0, 1

2n

�
.

There exist a rational number ε ≤ �ε and univariate continuous functions χq : I → R and

ψ : [0, 2] → R, where q = 0, . . . , 2n, such that for all x = (x1, . . . , xp) ∈ In,

f(x1, . . . , xn) =
2n�

q=0

χq

�
n�

p=1

λpψ(xp + qε)

�
. (C.1)

The function ψ, scalars λ1, . . . ,λn, and constant ε do not depend on the function f in ques-

tion. Additionally, the function ψ can be constructed to be Hölder continuous with exponent

log2n+2(2) (Sprecher [38]).

As the proof of Sprecher’s refinement requires a non-trivial introduction of notation and

bookkeeping, the proof of Theorem C.0.1 is not repeated here. Instead, the following aspects

of this proof will be highlighted here in substantial detail:

1. Construction of ψ and Tk,q;

2. Verification that ψ satisfies the Disjoint Image Condition;

121

3. Justification of ψ being Hölder continuous.

For the curious reader, the complete proof can be found in [38].

C.1 Construction of ψ and Tk,q

First is the construction of Tk,q for each refinement level k ∈ N and shift index q ∈

{0, . . . , 2n}. Fix an integer γ > 2n + 1; WLOG choose γ = 2n + 2. This constant γ is the

radix of this construction, in sense that each refinement level concerns itself with intervals

with left endpoints whose decimal expansions terminate in base γ. Recall the designation of

the ‘prototype set’ of intervals Tk, where the shift index q is dropped. Each interval T k
i ∈ Tk

is given as

T k
i =

�
i

γk
,

i

γk
+ δk

�
, (C.2)

where

δk =

�
γ − 2

γ − 1

�
1

γk
. (C.3)

In this way, the intervals in Tk are refined self-similarly by a factor of γ between each

refinement level. This compares to the factor of 1
9n

in Kolmogorov’s construction. The left

endpoints of the intervals are exactly the rational numbers whose decimal expansions in base

γ terminate by the kth decimal place. It is only a moderate amount of bookkeeping to show

that, with a correctly chosen ε value, the sets Tk,q satisfy the More Than Half Condition.

Values of ψ are determined concurrently while Tk is constructed. At refinement level k,

the values that ψ obtains are fixed at the left endpoints for each T k
i ∈ Tk. As k increases

towards infinity, a dense set of values is ascribed to ψ, and the definition of ψ is completed

122

by continuously connecting between the points that have already received values. While the

intervals refine following γk, the function values scale according to a factor of γβk , where the

sequence {βk}k∈N is chosen inductively so that given βk, the value of γ−βk+1 is sufficiently

small:

γ−βk+1 < γ−βk−1 min
h∈{−γβk ,...,−1,0,1,...,γβk}n

h�=0

�����
n�

p=1

hpλp

����� . (C.4)

How these function values are chosen with respect to this scaling rate is discussed in the

next subsection.

C.2 Verification of the Disjoint Image Condition

Once the values for βk have been defined, it is possible to fix the range of ψ on T k
i to stay

within certain bounds. Similar to how the left endpoints of T k
i were expanded in base γ,

denote the values for the corresponding possible image intervals as follows:

Hk
j =

�
j

γβk
,

j

γβk
+ (γ − 2)

�

�∈N

γ−βk+�

�
. (C.5)

These intervals are only possible image intervals, as for a given refinement level k, there are

many more intervals Hk
j than intervals T k

i . Sprecher describes an injection i �→ j(i) that

matches indices j = j(i) for the image intervals to the indices i of the domain decomposition

intervals. With this correspondance, for any x ∈ T k
i ,

ψ(x) ∈ Hk
j(i).

123

Let the index i = (i1, . . . , in) be the n-fold Cartesian product of indices of intervals in Tk, and

define the index J(i) = (j(i1), . . . , j(in)) denote the vector of corresonding image intervals.

For each J(i), define the intervals �Hk
J(i) as

�Hk
J(i) =

�
n�

p=1

λp

j(ip)

γβk
+ λp

q

n
,

n�

p=1

λp

j(ip)

γβk
+ λp

q

n
+

�
(γ − 2)

�

�∈N

γ−βk+�

�
n�

p=1

λp

�
. (C.6)

These intervals relate the square Sk
i =

�n

p=1 T
k
ip

to the function Ψq =
�n

p=1 λpψ(xp + qε)

similar to how the intervals Hk
j(i) relate the individual intervals T k

i to ψ. For x ∈ Sk
i ,

Ψ
q(x) ∈ �Hk

J(i).

This is the basis of verification that the constructed ψ function satisfies the Disjoint Image

Condition, although slightly more work is needed to show that the �Hk
J(i) intervals are disjoint.

Verification that these images are disjoint uses the assumption that the coefficients λ1, . . . ,λp

are integrally independent. More accurately, it uses the guarantee that for any scalar α �= 0,

the value αλp does not terminate in a base γ expansion. This property is necessary for this

specific proof of the Disjoint Image Condition; if another proof were supplied that did not

make use of the property, then the integral independence restriction on the λp values could

be relaxed.

In comparison with Kolmogorov’s proof, Sprecher’s intervals �Hk
J(i) correspond to Kol-

mogorov’s intervals ∆k,q
i as seen in Appendix B, Lemma 4.

124

C.3 Justification of Hölder Continuity

Let the inner function ψ and intervals Tk be defined by the process sketched above. Consider

the following lemma.

Lemma 6. For any two points x1, x2 ∈ I, with x1 �= x2, there exists some refinement level k

such that the two points are separated by exactly one gap between intervals belonging to Tk,

or by at least one interval and no more than γ − 1 intervals belonging to Tk.

This lemma follows from the regular distribution of intervals at refinement level k and

by the fact that the diameter of the intervals is the same for all intervals and decreases

uniformly in k. For a detailed proof of this lemma, see [38]. Sprecher uses this lemma to

bound the distance between the two points x1 and x2. For any such two points x1 and x2,

there is some k ∈ N such that the following bounds hold:

|x1 − x2| ≥ 2γ−k−1

|ψ(x1)− ψ(x2)| ≤ (γ + 3)2−k−1.

(C.7)

125

Set c = (γ + 3)2−α and α = logγ(2). Then,

|ψ(x1)− ψ(x2)| ≤ (γ + 3)2−(k+1)

= (c2α)2−(k+1)

= (c2α)(γα)−(k+1) by definition of α

= c2α(γ−(k+1))α

≤ c(2γ−(k+1))α since γ ≥ 2n+ 2

≤ c |x1 − x2|
α .

(C.8)

Therefore, ψ is Hölder continuous with exponent logγ(2).

126

Appendix D

Code: The Fridman Strategy

The following code implements the Fridman Strategy, as described in Chapter 4. The code

was written in Python, and beyond the standard packages, it makes use of the IntervalTree

and mpmath packages as well.

1 import random
2 import matp lo t l i b . pyplot as p l t
3 import matp lo t l i b . patches as patches
4 import mpmath as mp
5 import argparse
6 import sys
7 from operator import a t t r g e t t e r
8 import numpy as np
9 from mp l t o o l k i t s . mplot3d import Axes3D
10 from i n t e r v a l t r e e import In t e rva l , In t e rva lTre e
11 import time
12 import i t e r t o o l s as i t t
13
14 # Code f o r implementing L i p s c h i t z Inner Function Algorithm , us ing In t e r va lTree

s t r u c t u r e to r ep re s en t system of Towns
15 # Breaks a l l o f one l e v e l a t once , f i r s t by s o l v i n g f o r the ho l e s and p l u g s

and then break ing to c r ea t e gaps
16
17 par s e r = argparse . ArgumentParser (
18 d e s c r i p t i o n = ' Sprecher L i p s ch i t z Functions ' ,
19 ep i l o g = 'For more in format ion , s e e Sprecher (1972) , An Improvement in the

Superpos i t i on Theorem of Kolmogorov ' ,
20 f o rma t t e r c l a s s = argparse . ArgumentDefaultsHelpFormatter)
21 par s e r . add argument ('−−dim ' , type=int , d e f au l t =2,
22 help= 'The s p a t i a l dimension ')
23 par s e r . add argument ('−−J ' , type=int , d e f au l t =8,
24 help= 'Number o f i t e r a t i o n s ')
25 par s e r . add argument ('−−b r e ak r a t i o ' , type=f loat , d e f au l t =0.5 ,
26 help= 'Reduction in s i z e o f l a r g e s t town , at each step ')
27 par s e r . add argument ('−−draw ' , type=int , d e f au l t =0,

127

28 help= 'Use −−draw 1 to draw the i n t e r v a l s a f t e r every
i t e r a t i o n , and −−draw 2 to draw only the end r e s u l t ')

29 par s e r . add argument ('−−p lo t ' , type=int , d e f au l t =0,
30 help= 'Use −−p lo t 1 to p l o t the r e s u l t i n g func t i on ')
31 par s e r . add argument ('−−Phi ' , type=int , d e f au l t =0,
32 help=”Ful l Ps i p l o t ”)
33 par s e r . add argument ('−−prec ' , type=int , d e f au l t = 2∗∗8 ,
34 help= 'mp.mpf p r e c i s i o n ')
35 par s e r . add argument ('−−verbose ' , type=int , d e f au l t =0,
36 help= ' Pr int s d i a gno s t i c output to s c r e en ')
37 par s e r . add argument ('−−summary ' , type=int , d e f au l t = 1 ,
38 help= 'Summary o f town and func t i on con s t ru c t i on d i sp l ayed

a f t e r each i t e r a t i o n ')
39 args = par s e r . p a r s e a r g s ()
40
41 class Town(object) :
42 def i n i t (s e l f , s t a r t , end , val , nv , b i r th , parent) :
43 s e l f . end = end
44 s e l f . s t a r t = s t a r t
45 s e l f . l ength = mp.mpf (str (end−s t a r t))
46 s e l f . c en t e r = s t a r t + s e l f . l ength /2 .0
47 s e l f . va l = va l
48 s e l f . v l e f t = va l
49 s e l f . v r i gh t = va l
50 s e l f . nextva l = nv
51 s e l f . b i r th = b i r th
52 s e l f . parent = parent
53 s e l f . c h i l d r en = []
54 def l t (s e l f , o ther) :
55 return s e l f . s t a r t < other . s t a r t
56 def e q (s e l f , o ther) :
57 return (type (s e l f) == type (other)) and (s e l f . s t a r t == other . s t a r t) and

(s e l f . end == other . end)
58 def ha sh (s e l f) :
59 return hash ((s e l f . s t a r t , s e l f . l ength , s e l f . va l))
60 def r e p r (s e l f) :
61 return str (s e l f . s t a r t) + ” ˜˜˜ ” + str (s e l f . end)
62 def s t r (s e l f) :
63 return str (s e l f . s t a r t) + ” ˜˜˜ ” + str (s e l f . end)
64
65 class Gap(object) :
66 def i n i t (s e l f , s t a r t , end , parent , v a l l , v a l r) :
67 s e l f . s t a r t = s t a r t
68 s e l f . end = end
69 s e l f . l ength = end − s t a r t
70 s e l f . parent = parent
71 s e l f . c h i l d r en = []
72 s e l f . v l e f t = v a l l
73 s e l f . v r i gh t = va l r
74 def ha sh (s e l f) :
75 return hash ((s e l f . s t a r t , s e l f . end))
76 def r e p r (s e l f) :
77 return str (s e l f . s t a r t) + ” ˜˜˜ ” + str (s e l f . end)
78 def s t r (s e l f) :

128

79 return str (s e l f . s t a r t) + ” ˜˜˜ ” + str (s e l f . end)
80
81 class Hole (object) :
82 def i n i t (s e l f , s t a r t , end , v a l l e f t , v a l r i g h t , pts , s h i f t s , t l) :
83 s e l f . s t a r t = s t a r t
84 s e l f . end = end
85 s e l f . l ength = end − s t a r t
86 s e l f . v a l l e f t = v a l l e f t
87 s e l f . v a l r i g h t = v a l r i g h t
88 s e l f . t own l e f t = t l
89 try :
90 = (e for e in pts)
91 s e l f . pts = pts
92 s e l f . s h i f t s = s h i f t s
93 except TypeError :
94 s e l f . pts = [pts]
95 s e l f . s h i f t s = [s h i f t s]
96 def ha sh (s e l f) :
97 return hash ((s e l f . s t a r t , s e l f . end))
98 def r e p r (s e l f) :
99 return str (s e l f . s t a r t) + ” ˜˜˜ ” + str (s e l f . pts) + ” ˜˜˜ ” + str (s e l f .

end)
100 def s t r (s e l f) :
101 return str (s e l f . s t a r t) + ” ˜˜˜ ” + str (s e l f . pts) + ” ˜˜˜ ” + str (s e l f .

end)
102
103 class BT(object) :
104 def i n i t (s e l f , t r e e t op) :
105 s e l f . l e v e l s = mp.mpf (' 1 ')
106 s e l f . top = t r e e top
107 s e l f . l e a v e s = Int e rva lTree ()
108 s e l f . leafTowns = Int e rva lTree ()
109 s e l f . l ea fGaps = Int e rva lTree ()
110
111
112 mp. prec = args . prec
113 n = args . dim
114 J = args . J
115 Q = mp.mpf (2∗n + 1)
116 Q int = 2∗n + 1
117 P = mp.mpf (n)
118 theta = args . b r e ak r a t i o # \ t h e t a \ in (1/2 , 1)
119 ep s i l o n = mp.mpf (' 1 ') /(Q int−1)
120 draw = args . draw
121 reftown = Town(0 , 0 , 0 ,None , 0 , None)
122 verbose = args . verbose
123 summary = args . summary
124 p l o t f xn = args . p l o t
125 p lotPhi = args . Phi
126
127 def eva luate (B, pt , q) :
128 i f pt >= 1 . 0 : # safeguard t r y i n g to e va l ua t e at endpoint
129 pt = mp.mpf (' 1 ') − mp.mpf (' 2 ')∗∗(−J − 2)
130 pt = pt − q∗ ep s i l o n

129

131 bb = B. l e av e s [pt]
132 [b] = bb
133 b l = b . data . v l e f t
134 br = b . data . v r i gh t
135 bs = b . data . s t a r t
136 be = b . data . end
137 return bl + (br−bl) /(be−bs) ∗(pt−bs)
138
139 def Phi (B, x , q) :
140 return sum ([(mp.mpf (1 . 0) / ((p+2)∗∗mp.mpf (0 . 5))) ∗ eva luate (B, x [p] , q) for p

in range (len (x))])
141
142
143 def p l o t f xn (towntree , s h i f t) :
144 po in t s = []
145 va l s = []
146 # ge t coord va l u e s f o r p l o t
147 s t = sorted (l i s t (towntree))
148 for twn in s t :
149 t = twn . data
150 i f t . s t a r t + s h i f t >= 0.0 and t . end + s h i f t <= 1 . 0 :
151 po in t s . append (t . s t a r t + s h i f t)
152 po in t s . append (t . end + s h i f t)
153 va l s . append (t . va l)
154 va l s . append (t . va l)
155 e l i f t . s t a r t + s h i f t < 1 .0 and t . end + s h i f t > 1 . 0 :
156 po in t s . append (t . s t a r t + s h i f t)
157 po in t s . append (1 . 0)
158 va l s . append (t . va l)
159 va l s . append (t . va l)
160 e l i f t . s t a r t + s h i f t < 0 .0 and t . end + s h i f t > 0 . 0 :
161 po in t s . append (0 . 0)
162 po in t s . append (t . end + s h i f t)
163 va l s . append (t . va l)
164 va l s . append (t . va l)
165 p l t . p l o t (po ints , va l s , '− ')
166
167 def plot towns (towntree) :
168 f i g 1 = p l t . f i g u r e ()
169 ax1 = f i g 1 . add subplot (111)
170
171 y s h i f t = 0 .05
172 for q in range (Q int) :
173 for twn in towntree :
174 t = twn . data
175 ax1 . add patch (
176 patches . Rectangle (
177 (t . s t a r t + q∗ eps i l on , y s h i f t + q ∗0 . 2) , # (x , y)
178 t . length , # width
179 0 . 1 , # he i g h t
180)
181)
182 p l t . xl im ([−1 ,2])
183 p l t . show ()

130

184
185 def draw BT Node (node , v sh i f t , y loc , ax1) :
186 i f type (node) == type (re ftown) :
187 ax1 . add patch (
188 patches . Rectangle (
189 (node . s t a r t , y l oc) , # (x , y)
190 node . end − node . s t a r t , # width
191 v sh i f t , # he i g h t
192)
193)
194
195 def v i sua l i z e BT Tree (node , l e v e l , v s h i f t , ax1) :
196 draw BT Node (node , v sh i f t , v s h i f t ∗(2∗ l e v e l + 1) , ax1)
197 for c in node . ch i l d r en :
198 v i sua l i z e BT Tree (c , l e v e l +1, v sh i f t , ax1)
199
200 def v i sua l i z e BT (B) :
201 BT = B. top
202 num leve l s = B. l e v e l s
203 f i g 1 = p l t . f i g u r e ()
204 ax1 = f i g 1 . add subplot (111)
205 v s h i f t = 1 . 0 / (2 . 0∗ num leve l s + 1 . 0)
206 v i sua l i z e BT Tree (BT, 0 , v sh i f t , ax1)
207 p l t . xl im ([−1 ,1])
208 p l t . show ()
209
210 # Function g e t t own s a bo v e t h r e s : In t e r va lTree (data=Town) , num −−> l i s t (Town)
211 # Gets a l l towns whose l e n g t h i s above the t h r e s h o l d
212 # Input :
213 # towntree : In t e r va lTree o f Towns
214 # thr e s : f l o a t , t h r e s h o l d to determine those to break
215 # Output :
216 # l i s t o f Towns
217 def ge t towns above thre sh (towntree , thre sh) :
218 return [t . data for t in towntree i f t . data . l ength > thresh]
219
220 # Function get my town : In t e r va lTree (data=Town) , p t −−> Town
221 # Returns the town a po in t l i e s in ; e l s e r e tu rns None
222 # Input :
223 # towntree : In t e r va lTree o f Towns
224 # pt : f l o a t
225 # Output :
226 # Town, i f p t i s in the Town
227 # None , i f t h e r e i s no Town tha t i n c l u d e s pt
228 def get my town (towntree , pt) :
229 town ret = towntree [pt]
230 emptyset = set ()
231 i f town ret != emptyset :
232 [t r] = town ret
233 i f t r . data . s t a r t == pt :
234 return None
235 e l i f t r . data . end == pt :
236 return None
237 else :

131

238 return t r . data
239 else :
240 return None
241
242 # Function i s p t i n t own : In t e r va lTree (Towns) , num, num −−> Town() OR s t r
243 # Checks to see whether a po in t f a l l s w i th in a s h i f t e d s e t o f Towns
244 # Input :
245 # towntree : In t e r va lTree o f Town() ' s
246 # pt : po in t to check
247 # s h i f t : s h i f t f o r the towntree
248 # Output :
249 # I f pt i s in the s h i f t e d towntree : the s h i f t e d town tha t i n c l u d e s the po in t
250 # I f pt i s b e f o r e the towns s t a r t : s t r i n g ' b e f o r e '

251 # I f pt i s a f t e r the towns end : s t r i n g ' a f t e r '

252 # I f pt i s in gap o f s h i f t e d towntree : s t r i n g ' gap '

253 def i s p t i n t own (towntree , pt , s h i f t) :
254 i f pt − s h i f t <= −1:
255 return ” be f o r e ”
256 e l i f pt − s h i f t >= 1 :
257 return ” a f t e r ”
258 else :
259 town ret = get my town (towntree , pt − s h i f t)
260 i f town ret == None :
261 return ' ho le '

262 else :
263 return town ret
264
265 # Function ge t gap : In t e r va lTree (Towns) , l i s t (num) , num −−> num, num
266 # Determines s i z e o f gap , t a k ing in t o account both o ther Towns and o ther

b r eakp t s / gaps as w e l l
267 # Input :
268 # towntree : In t e r va lTree o f a l l Towns
269 # breakp t s : l i s t o f a l l p o in t s to break at t h i s l e v e l o f re f inement
270 # pt : the break po in t
271 # Output :
272 # b r e a k s t a r t : s t a r t o f break
273 # break end : end o f break
274 def get gap (towntree , breakpts , pt) :
275 r h o l = np . i n f
276 rho r = np . i n f
277 i f verbose :
278 print ”\nGetting break f o r po int ” , pt , ”\n”
279 for q in range(−Q int+1,Q int) :
280 my town = get my town (towntree , pt + q∗ e p s i l o n)
281 i f my town i s not None :
282 i f verbose :
283 print pt + q∗ eps i l on , ” :\ t ” , my town , ”\ t \ t r h o l :\ t ” , pt + q∗

ep s i l o n − my town . s ta r t , ”\ t rho r :\ t ” , my town . end − (pt
+ q∗ e p s i l o n)

284 d l = (mp.mpf (2) /3) ∗(pt + q∗ ep s i l o n − my town . s t a r t) #const < 1
285 i f d l < r h o l :
286 r h o l = d l
287 d r = (mp.mpf (2) /3) ∗(my town . end − (pt + q∗ ep s i l o n))
288 i f d r < rho r :

132

289 rho r = d r
290 else :
291 i f verbose :
292 print pt + q∗ eps i l on , ” :\ t ” , my town
293 for q in range(−(2∗Q int)+1 ,2∗Q int) : #Avoid c r ea t i n g ove r l app ing gaps on

t h i s re f inement l e v e l
294 r h o p t s l = [pt − (bp+q∗ e p s i l o n) for bp in breakpts i f pt > bp + q∗

ep s i l o n]
295 r h o p t s r = [(bp+q∗ ep s i l o n) − pt for bp in breakpts i f pt < bp + q∗

ep s i l o n]
296 i f len (r h o p t s l) > 0 :
297 d l = (mp.mpf (1) /3) ∗min(r h o p t s l) #const < 1/2
298 i f d l < r h o l :
299 r h o l = d l
300 i f len (r h o p t s r) > 0 :
301 d r = (mp.mpf (1) /3) ∗min(r h o p t s r)
302 i f d r < rho r :
303 rho r = d r
304 a s s e r t r h o l > 0
305 a s s e r t rho r > 0
306 b r e ak s t a r t = pt − min(rho l , (mp.mpf (1) /3) ∗ e p s i l o n)
307 break end = pt + min(rho r , (mp.mpf (1) /3) ∗ e p s i l o n)
308 i f verbose :
309 print ' \nbreak : ' , b r eak s ta r t , ” ˜˜˜ ” , pt , ' ˜˜˜ ' , break end , ”\n”
310 return break s ta r t , break end
311
312 # Function ge t bo rde r t owns : In t e r va lTree (Town) , num, l i s t (Town) −−> l i s t (Town

) , l i s t (Town) , l i s t (num)
313 # Given po in t s and t h e i r s h i f t s t h a t a l i g n in to ho les , determines the towns to

the l e f t and r i g h t o f the po in t
314 # Inputs :
315 # towntree : In t e r va lTree o f a l l Trees
316 # pt : po in t to check
317 # town l i s t : l i s t o f Town ' s or key s t r i n g ' ho l e ' corresponding to where each

pt f a l l s
318 # Output :
319 # t l e f t : l i s t o f towns to the l e f t o f each pt f o r each in t own l i s t
320 # t r i g h t : l i s t o f towns to the r i g h t o f each pt f o r each in t own l s i t
321 # s h i f t s : l i s t o f s h i f t s f o r the p t s to a l i g n in the ho l e s
322 def get border towns (towntree , pt , t own l i s t) :
323 QQ = range(−Q int+1,Q int)
324 qq = [q for q , t in enumerate(t own l i s t) i f t== ' ho le ']
325 t l e f t = []
326 t r i g h t = []
327 s h i f t s = []
328 for p in range (len (qq)) :
329 q k = −QQ[qq [p]]
330 s h i f t s . append (q k∗ e p s i l o n)
331 t l e f t . append (max([t . data for t in towntree i f t . data . end < pt +

s h i f t s [p]] , key=a t t r g e t t e r (' end ')))
332 t r i g h t . append (min ([t . data for t in towntree i f t . data . s t a r t > pt +

s h i f t s [p]] , key=a t t r g e t t e r (' s t a r t ')))
333 return t l e f t , t r i g h t , s h i f t s
334

133

335 def r e f i n e (j , B) :
336 t ime s t a r t = time . time ()
337 newLeaves = Int e rva lTree ()
338 newLeafTowns = Inte rva lTree ()
339 newLeafGaps = Int e rva lTree ()
340 towntree = B. leafTowns
341
342 towns to break = get towns above thre sh (B. leafTowns , theta ∗∗ j)
343 ntb = len (towns to break)
344 i f verbose :
345 print ' ntb ' , ntb
346 print

347 i f ntb < 1 :
348 i f verbose :
349 print ('No towns to break at t h i s i t e r a t i o n ')
350 return

351
352 #
353 # #############
354 ### ###
355 ### PLUGS ###
356 ### ###
357 #############
358
359 # Find Holes and So lve f o r Plugs
360 ho l e t r e e = Int e rva lTree ()
361 for tb in towns to break :
362 pt = tb . c en t e r
363 i f verbose :
364 print

365 print ' tb ' , tb
366 print ' pt ' , pt
367 pt towns = [None] ∗ (2∗ Q int − 1)
368 for q in range(−Q int+1,Q int) :
369 pt towns [q+Q int −1] = i s p t i n t own (towntree , pt , q∗ ep s i l o n)
370 num h = sum(t== ' ho le ' for t in pt towns)
371 i f verbose :
372 print ' pt towns ' , pt towns
373 print 'nh ' , num h
374 i f num h > 2 :
375 print ”NOT RIGHT NUMBER OF BREAKS! ”
376 return

377 i f num h > 0 :
378 gap l e f t , gap r ight , s h i f t s = get border towns (towntree , pt ,

pt towns)
379 for i in range (num h) :
380 a l r e ady p r e s en t = ho l e t r e e [g a p l e f t [i] . end] # Check to see

i f t h i s ho l e i s a l r eady pre sen t in the h o l e t r e e
381 i f len (a l r e ady p r e s en t) == 0 : # Hole i s not

pre sen t −−> add ho l e
382 h = Hole (g a p l e f t [i] . end , gap r i gh t [i] . s t a r t , g a p l e f t [i] .

val , g ap r i gh t [i] . val , pt , s h i f t s [i] , g a p l e f t [i])
383 ho l e t r e e . addi (g a p l e f t [i] . end , gap r i gh t [i] . s t a r t , h)
384 i f verbose :

134

385 print ”Hole :\ t ” , h
386 else : # Hole i s

pre sen t −−> update l i s t o f po in t s t ha t f a l l in t ha t ho l e
387 h = a l r e ady p r e s en t . pop () . data
388 h . pts . append (pt)
389 h . s h i f t s . append (s h i f t s [i])
390 ho l e t r e e . addi (h . s t a r t , h . end , h)
391 i f verbose :
392 print ”Hole :\ t ” , h
393
394 for g in B. lea fGaps :
395 gb = g . data
396 h t i n t e r s e c t = ho l e t r e e [gb . s t a r t : gb . end]
397 i f h t i n t e r s e c t == set () :
398 gb dup = Gap(gb . s t a r t , gb . end , gb , gb . v l e f t , gb . v r i gh t)
399 gb . ch i l d r en = [gb dup]
400 newLeaves . addi (gb dup . s ta r t , gb dup . end , gb dup)
401 newLeafGaps . addi (gb dup . s ta r t , gb dup . end , gb dup)
402 else :
403 a s s e r t len (h t i n t e r s e c t) == 1
404 [w] = h t i n t e r s e c t
405 h = w. data
406 num pts = len (h . pts)
407 i f verbose :
408 print ' \nHole :\ t ' , h
409 o l d s l o p e = (h . v a l r i g h t − h . v a l l e f t) /h . l ength
410 new slope = mp.mpf (1) − mp.mpf (2) ∗∗(− j−1)
411
412 p s h i f t e d = [h . pts [p] + h . s h i f t s [p] for p in range (num pts)]
413 p s h i f t e d . s o r t ()
414 f = [h . v a l l e f t + o l d s l o p e ∗(p s h i f t e d [p] − h . s t a r t) for p in

range (num pts)]
415 f . i n s e r t (0 , h . v a l l e f t)
416 f . append (h . v a l r i g h t)
417
418 # Construct System
419 C = mp. matrix (2∗ num pts)
420 z = mp. matrix (2∗num pts , 1)
421 for i in range (num pts + 1) :
422 i f i == 0 :
423 C[0 , 0] = new slope
424 z [0] = f [1] − f [0] + new slope ∗h . s t a r t
425 e l i f i == num pts :
426 C[num pts , 2∗num pts−1] = −new slope
427 z [num pts] = f [−1] − f [−2] − new slope ∗h . end
428 else :
429 C[i , 2∗ i −1] = −new slope
430 C[i , 2∗ i] = new slope
431 z [i] = f [i +1] − f [i]
432 i f num pts > 1 :
433 for i in range (num pts+1, 2∗num pts) :
434 C[i , 2∗(i−num pts)−1] = mp.mpf (1)
435 C[i , 2∗(i−num pts)] = mp.mpf (1)
436 z [i] = p s h i f t e d [i−num pts−1] + p s h i f t e d [i−num pts]

135

437
438 i f verbose :
439 print ' System : Cx = z '

440 print 'C:\n ' , C
441 print ' z :\n ' , z , ' \n '

442
443 x = mp. l u s o l v e (C, z)
444
445 for i in range (num pts) :
446 p l u g l = x [2∗ i]
447 p lug r = x [2∗ i + 1]
448 i f verbose :
449 print ' Point :\ t ' , h . pts [i]
450 print ” h o l e s t a r t :\ t ” , h . s t a r t
451 print ” p l u g l :\ t ” , p l u g l
452 print ” p t s h i f t e d :\ t ” , p s h i f t e d [i]
453 print ” p lug r :\ t ” , p lug r
454 print ” ho le end :\ t ” , h . end
455 plug = Town(p lug l , p lug r , f [i +1] , f [i +2] , j , gb)
456 towntree . addi (p lug l , p lug r , plug)
457 newLeaves . addi (p lug l , p lug r , plug)
458 newLeafTowns . addi (p lug l , p lug r , plug)
459
460 i f i == 0 :
461 l g l = h . s t a r t
462 else :
463 l g l = x [2∗ i − 1]
464 l e f t g ap = Gap(l g l , p lug l , gb , f [i] , f [i +1])
465 newLeaves . addi (l e f t g a p . s t a r t , l e f t g ap . end , l e f t g a p)
466 newLeafGaps . addi (l e f t g ap . s t a r t , l e f t g ap . end , l e f t g a p)
467
468 gb . ch i l d r en = gb . ch i l d r en + [plug , l e f t g ap]
469
470 r ightgap = Gap(p lug r , h . end , gb , f [−2] , f [−1])
471 newLeaves . addi (r i ghtgap . s t a r t , r i ghtgap . end , r i ghtgap)
472 newLeafGaps . addi (r i ghtgap . s t a r t , r i ghtgap . end , r i ghtgap)
473 gb . ch i l d r en = gb . ch i l d r en + [r ightgap]
474
475 h . t own l e f t . nextva l = f [1]
476
477 i f verbose :
478 print ”\nPlugged Towntree : ”
479 print [t . data for t in towntree]
480 print

481
482 #
483 # ############
484 ### ###
485 ### GAPS ###
486 ### ###
487 ############
488
489 breakpts = [tb . c en t e r for tb in towns to break]
490 for t in B. leafTowns :

136

491 tb = t . data
492 i f tb . l ength > theta ∗∗ j :
493 pt = tb . c ent e r
494 break s ta r t , break end = get gap (towntree , breakpts , pt)
495 i f (tb . nextva l == None) or ((tb . nextva l − tb . va l) > (break end −

b r e ak s t a r t) ∗mp.mpf (' 0 .5 ')) :
496 new val = tb . va l + (break end − b r e ak s t a r t) ∗mp.mpf (' 0 .5 ') #

Sta r t i n g s l o p e va lue
497 else : #Not enough room to go up a f u l l s t a r t i n g−s l o p e
498 new val = (tb . va l + tb . nextva l) ∗mp.mpf (' 0 .5 ') #average
499
500 l e f t = Town(tb . s t a r t , b r eak s ta r t , tb . val , new val , tb . b i r th , tb)
501 r i g h t = Town(break end , tb . end , new val , tb . nextval , tb . b i r th , tb)
502 middle = Gap(br eak s ta r t , break end , tb , tb . val , new val)
503
504 tb . ch i l d r en = [l e f t , r i ght , middle]
505 newLeaves . addi (l e f t . s t a r t , l e f t . end , l e f t)
506 newLeaves . addi (r i g h t . s t a r t , r i g h t . end , r i g h t)
507 newLeaves . addi (middle . s t a r t , middle . end , middle)
508 newLeafTowns . addi (l e f t . s t a r t , l e f t . end , l e f t)
509 newLeafTowns . addi (r i g h t . s t a r t , r i g h t . end , r i g h t)
510 newLeafGaps . addi (middle . s t a r t , middle . end , middle)
511 else :
512 tb dup = Town(tb . s t a r t , tb . end , tb . val , tb . nextval , tb . b i r th+1, tb

)
513 tb . ch i l d r en = [tb dup]
514 newLeaves . addi (tb dup . s t a r t , tb dup . end , tb dup)
515 newLeafTowns . addi (tb dup . s t a r t , tb dup . end , tb dup)
516
517
518 #
519 # ################
520 ### ###
521 ### UPDATE B ###
522 ### ###
523 ################
524
525 B. l e v e l s = B. l e v e l s + 1
526 B. l e av e s = newLeaves
527 B. leafTowns = newLeafTowns
528 B. lea fGaps = newLeafGaps
529
530
531 time end = time . time ()
532 i f summary or verbose :
533 print ' \ntheta :\ t \ t \ t ' , theta ∗∗ j
534 print ' sma l l e s t town s i z e :\ t ' , min ([t . data . l ength for t in B. leafTowns

])
535 print ' l a r g e s t town s i z e :\ t ' , max([t . data . l ength for t in B. leafTowns

])
536 print 'number o f towns :\ t ' , len (B. leafTowns)
537 print 'number o f towns broken :\ t ' , ntb
538 print ' t o t a l l ength :\ t \ t ' , sum([t . data . l ength for t in B. leafTowns])
539 print ' time e lapsed :\ t \ t ' , t ime end − t ime s t a r t

137

540 print

541 i f draw == 1 :
542 p lot towns (B. leafTowns)
543
544 def f u l l R e f i n e (J) :
545 print

546 print (” Se t t i ng up a Sprecher Town System”)
547
548 domain = Int e rva lTree ()
549 s t a r t = mp.mpf(−1)
550 end = mp.mpf (1)
551 I = Town(s ta r t , end , mp.mpf (0) , None , 0 , None)
552 domain . addi (s t a r t , end , I)
553
554 B = BT(I)
555 B. l e av e s = domain
556 B. leafTowns = domain
557
558 print (' Beginning re f inement . . . ')
559 print

560
561 j = mp.mpf (' 0 ')
562 while j < J :
563 i f summary or verbose :
564 print ' Beginning l e v e l ' , j
565 r e f i n e (j , B)
566 j = j+1
567
568 return B
569
570 def p lo t Ph i (B) :
571 a s s e r t P == 2
572 for q in range (Q) :
573 Ps i q = lambda x , y : Phi (B, (x , y) , mp.mpf (str (q)))
574 mp. s p l o t (Psi q , [0 . 0 , 0 . 9 9 9 9 9] , [0 . 0 , 0 . 9 9 9 9 9] , po in t s = 100)
575 p l t . show ()
576
577
578 def con s t ru c t Inne rFunc t i on p l o t t i ng (B) :
579 i f draw == 1 or draw == 2 :
580 p lot towns (B. leafTowns)
581 i f p lo t f xn :
582 f i g 2 = p l t . f i g u r e ()
583 p l o t f xn (B. leafTowns , 0)
584 p l t . show ()
585 i f plotPhi :
586 p lo t Ph i (B)
587
588 # Driver f o r Inner Function Construct ion
589 # Vi sua l i z e s e v o l u t i on o f Towns as they undergo re f inement
590 def cons t ruct InnerFunct ion () :
591 B = f u l l R e f i n e (J)
592 con s t ru c t Inne rFunc t i on p l o t t i ng (B)
593 i f draw == 1 or draw == 2 :

138

594 v i sua l i z e BT (B)
595 return B

139

Appendix E

Code: Köppen’s Inner Function

The following Python code implements Köppen’s inner function [26], as described in Chapter

5.

1 from numpy import ∗

2 import sys , argparse , copy , time
3 import matp lo t l i b . pyplot as p l t
4 import matp lo t l i b . patches as patches
5 from mp l t o o l k i t s . mplot3d import Axes3D
6 from c o l l e c t i o n s import Counter
7 from b i s e c t import ∗

8 from i n t e r v a l t r e e import In t e rva l , In t e rva lTre e
9
10
11 par s e r = argparse . ArgumentParser (
12 par s e r . add argument ('−−dim ' , type=int , d e f au l t =2,
13 help= 'The s p a t i a l dimension ')
14 par s e r . add argument ('−−kmin ' , type=int , d e f au l t =1,
15 help= 'The i n i t i a l r e s o l u t i o n ')
16 par s e r . add argument ('−−kmax ' , type=int , d e f au l t =5,
17 help= 'The f i n a l r e s o l u t i o n ')
18 par s e r . add argument ('−−gamma ' , type=int , d e f au l t =10,
19 help= 'Base f o r expansion ')
20 args = par s e r . p a r s e a r g s ()
21
22 n = args . dim
23 m = 2∗n + 1
24 gamma = args . gamma
25 a = 1 . / (gamma ∗ (gamma − 1 . 0))
26
27
28 def beta (r) :
29 return (pow(n , r) −1.) /(n−1.)
30
31 def lambda p (p) :
32 i f p == 1 :
33 return 1
34 else :

140

35 eps = 1 .
36 t o l = sys . f l o a t i n f o . e p s i l o n
37 t o t a l = 0 .0
38 r = 1 .
39 while eps > t o l :
40 eps = pow(gamma,(1 .−p) ∗beta (r))
41 r += 1 .
42 t o t a l += eps
43 return t o t a l
44
45 def e x t r a c tD i g i t s (d , k , gamma) :
46 ' ' 'Return a l i s t o f the f i r s t k base gamma d i g i t s f o r an in t ege r , wi th the

most s i g n i f i c a n t d i g i t f i r s t ' ' '

47 ar r d = [] ;
48 for i in range (k) :
49 a r r d . i n s e r t (0 , d % gamma)
50 d = d // gamma
51 return a r r d
52
53 def koppenPhiDigits (d , gamma) :
54 ' ' 'Koppen a l gor i thm app l i e d to a base gamma d i g i t s t r i n g ' ' '

55 k = len (d)
56 i f k == 1 :
57 return d [0] / gamma
58 e l i f d[−1] < (gamma − 1) :
59 return koppenPhiDigits (d [: −1] , gamma) + d[−1]∗pow(gamma, −beta (k))
60 else :
61 d prev = d [: −1]
62 d next = copy . deepcopy (d)
63 while d next != [] and d next [−1] == gamma−1:
64 d next = d next [: −1]
65 i f d next == [] :
66 d next = [gamma]
67 else :
68 d next [−1] += 1
69 return 0 .5 ∗ (koppenPhiDigits (d prev , gamma) + koppenPhiDigits (d next ,

gamma) + (gamma−2)∗pow(gamma, −beta (k)))
70
71 def koppenPhi (dk , gamma, k) :
72 ' ' 'Koppen a l gor i thm fo r e v a l u a t i n g an inner func t i on at base gamma decimal d

to accuracy l e v e l k ' ' '

73 i f k == 1 :
74 return dk
75 else :
76 dk = dk∗pow(gamma, k) # Sh i f t decimal to be a whole

number
77 d = ex t r a c tD i g i t s (round(dk) , k , gamma) # Turn in to a l i s t o f d i g i t s
78 return koppenPhiDigits (d , gamma)
79
80 def innerTabulat ion (gamma, k) :
81 dkrange = l i n s p a c e (0 . , 1 . , num = pow(gamma, k) + 1)
82 kP = array (dkrange)
83 for i , dk in enumerate(dkrange [: −1]) :
84 va lue = koppenPhi (dk , gamma, k)

141

85 kP [i] = value
86 return dkrange , kP
87
88 def computeArcLength (kP) :
89 r i s e s = [cur rent − prev for prev , cur r ent in zip (kP , kP [1 :])]
90 s l o p e s = [r i s e s [j] /pow(gamma, −k) for j in range (len (r i s e s))]
91 p i e c e l e n g t h s = [sq r t (pow(gamma, −2∗k) + r i s e s [j]∗∗2) for j in range (len (

r i s e s))]
92 cu rv e l eng th s = cumsum(p i e c e l e n g t h s)
93 t o t a l = cu rv e l eng th s [−1]
94 cu rv e l eng th s = i n s e r t (curve l engths , 0 , 0)
95 return r i s e s , cu rve l engths , t o t a l
96
97 def a r r ay t o f xn (xs , ys) :
98 def a r r f un c (t) :
99 i f t <= xs [0] :

100 return ys [0]
101 e l i f t >= xs [−1] :
102 return ys [−1]
103 else :
104 i = b i s e c t l e f t (xs , t)
105 i f i == len (xs) −1:
106 return ys [−1]
107 else :
108 x l = xs [i]
109 xr = xs [i +1]
110 return ys [i] + (t − x l) ∗(ys [i +1] − ys [i])
111 return a r r f un c
112
113
114 def KoppenIntervals (gamma, k) :
115 dkrange = l i n s p a c e (0 . , 1 . , num = pow(gamma, k) + 1)
116 s t a r t s = dkrange [: −1]
117 ends = [s + (gamma−1)∗pow(gamma, −(k+1)) for s in s t a r t s]
118 return [(s , e) for s , e in zip (s t a r t s , ends)]
119
120 def p l o t i n t e r v a l s (l i s t i n t e r v a l s) :
121 f i g 1 = p l t . f i g u r e ()
122 ax1 = f i g 1 . add subplot (111)
123
124 y s h i f t = 0 .2
125 q = −1
126 for I in l i s t i n t e r v a l s :
127 q += 1
128 for i in I :
129 ax1 . add patch (
130 patches . Rectangle (
131 (i [0] , q∗ y s h i f t) , # (x , y)
132 i [1] − i [0] , # width
133 0 . 1 , # he i g h t
134)
135)
136 p l t . xl im ([0 , 1])
137 p l t . yl im ([−0 .1 , (q+1)∗ y s h i f t])

142

138 p l t . show ()
139
140 def p l o t i n t e r v a l s h i f t e d (I , s h i f t , num sh i f t s) :
141 f i g 1 = p l t . f i g u r e ()
142 ax1 = f i g 1 . add subplot (111)
143
144 y s h i f t = 0 .2
145 for q in range (num sh i f t s) :
146 for i in I :
147 ax1 . add patch (
148 patches . Rectangle (
149 (i [0] + q∗ s h i f t , q∗ y s h i f t) , # (x , y)
150 i [1] − i [0] , # width
151 0 . 1 , # he i g h t
152)
153)
154 p l t . yl im ([−0 .1 , (q+1)∗ y s h i f t])
155 p l t . show ()
156
157
158 for k in range (args . kmin , args . kmax) :
159 dkrange , kP = innerTabulat ion (gamma, k)
160 r i s e s , cu rve l engths , t o t a l l e n g t h = computeArcLength (kP)
161 print ' l ength o f curve ' , k , ' :\ t ' , t o t a l l e n g t h
162 p l t . p l o t (dkrange , [c / t o t a l l e n g t h for c in cu rv e l eng th s] , l a b e l=str (k))
163 p l t . p l o t ([c/ t o t a l l e n g t h for c in cu rv e l eng th s] , dkrange , l a b e l= ' inv ' +

str (k))
164 p l t . l egend (l o c= ' upper l e f t ')
165 p l t . show ()
166 s c a l ed cu rv e = [c / t o t a l l e n g t h for c in cu rv e l eng th s]
167
168 sigma = ar r ay t o f xn (dkrange , s c a l ed cu rv e)
169 KI = KoppenIntervals (gamma, k)
170 sigmaKI = [(sigma (i [0]) , sigma (i [1])) for i in KI]
171 print 'max i n t e r v a l l ength f o r KI ' , k , ' :\ t ' , max([s [1]− s [0] for s in

sigmaKI])
172 p l o t i n t e r v a l s ([KI , sigmaKI])
173 p l o t i n t e r v a l s h i f t e d (KI , 1 . / (gamma∗(gamma−1)) , 5)
174 p l o t i n t e r v a l s h i f t e d (sigmaKI , 1 . / (gamma∗(gamma−1)) , 5)
175
176
177 s igma inv = a r r ay t o f xn (s ca l ed curve , dkrange)
178 p s i = a r r ay t o f xn (dkrange , kP)
179 mapped psi = [p s i (s igma inv (dkrange [d])) for d in range (len (dkrange))]
180 p l t . p l o t (dkrange , kP)
181 p l t . p l o t (dkrange , mapped psi)
182 p l t . show ()

143

Bibliography

[1] Vladimir I. Arnol’d. On Functions of Three Variables. Dokl. Akad. Nauk SSSR, 114:679–

681, 1957.

[2] Vladimir I. Arnol’d. On the Representation of Functions of Several Variables as a

Superposition of Functions of a Smaller Number of Variables. Mat. Prosveshchenie,

3:4161, 1958.

[3] Aida Kh. Asgarova and Vugar E. Ismailov. Diliberto–Straus Algorithm for the Uni-

form Approximation by a Sum of Two Algebras. Proceedings-Mathematical Sciences,

127(2):361–374, 2017.

[4] Robert Bellman. Curse of Dimensionality. Adaptive Control Processes: A Guided Tour.

Princeton, NJ, 1961.

[5] Valeriu Bern and Artur Zawadzki. On Kolmogorov’s Superpositions: Novel Gates and

Circuits for Nanoelectronics? In IJCNN’05. Proceedings. 2005 IEEE International Joint

Conference on Neural Networks, volume 1, pages 651–656. IEEE, 2005.

[6] Lorenz T. Biegler, Omar Ghattas, Matthias Heinkenschloss, and Bart van Bloe-

men Waanders. Large-Scale PDE-Constrained Optimization: An Introduction. In

Large-Scale PDE-Constrained Optimization, pages 3–13. Springer, 2003.

144

[7] Jurgen Braun and Michael Griebel. On a Constructive Proof of Kolmogorov’s Super-

position Theorem. Constr. Approx., 30:653–675, 2009.

[8] Mark Coppejans. On Kolmogorov’s Representation of Functions of Several Variables

by Functions of One Variable. Journal of Econometrics, 123(1):1–31, 2004.

[9] Jérôme Darbon and Stanley Osher. Algorithms for Overcoming the Curse of Dimension-

ality for Certain Hamilton–Jacobi Equations Arising in Control Theory and Elsewhere.

Research in the Mathematical Sciences, 3(1):19, 2016.

[10] Rui de Figueiredo. Implications and Applications of Kolmogorov’s Superposition The-

orem. IEEE Transactions on Automatic Control, 25(6):1227–1231, 1980.

[11] Stephen Demko. A Superposition Theorem for Bounded Continuous Functions. Pro-

ceedings of the American Mathematical Society, 66(1):75–78, 1977.

[12] Persi Diaconis and Mehrdad Shahshahani. On Nonlinear Functions of Linear Combina-

tions. SIAM Journal on Scientific and Statistical Computing, 5(1):175–191, 1984.

[13] Stephen P. Diliberto and Ernst G. Straus. On the Approximation of a Function of

Several Variables by the Sum of Functions of Fewer Variables. Pacific J. Math, 1(2):195–

210, 1951.

[14] Raouf Doss. A Superposition Theorem for Unbounded Continuous Functions. Trans-

actions of the American Mathematical Society, 233:197–203, 1977.

[15] Buma L. Fridman. Improvement in the Smoothness of Functions in the Kolmogorov

Superposition Theorem. Dokl. Akad. Nauk SSR, 177:5:1019–1022, 1967. English transl.

145

Soviet Math. Dokl. 8, 6 (1967), 1550-1553.

[16] Jerome H. Friedman and Werner Stuetzle. Projection Pursuit Regression. Journal of

the American statistical Association, 76(376):817–823, 1981.

[17] Federico Girosi and Tomaso Poggio. Representation Properties of Networks: Kol-

mogorov’s Theorem is Irrelevant. Neural Computation, 1(4):465–469, 1989.

[18] Robert Hecht-Nielsen. Kolmogorov’s Mapping Neural Network Existence Theorem. In

Proceedings of the international conference on Neural Networks, pages 11–14. IEEE

Press, 1987.

[19] Torbjörn Hedberg. The Kolmogorov Superposition Theorem, Appendix II in Topics in

Approximation Theory, HS Shapiro. Lecture Notes, 187, 1971.

[20] David Hilbert. Mathematical Problems. Bulletin of the American Mathematical Society,

8(10):437–479, 1902.

[21] Boris Igelnik and Neel Parikh. Kolmogorov’s Spline Network. IEEE transactions on

neural networks, 14(4):725–733, 2003.

[22] Jean-Pierre Kahane. Sur le Theoreme de Superposition de Kolmogorov. Journal of

Approximation Theory, 13(3):229–234, 1975.

[23] Semen Ya. Khavinson. Best Approximation by Linear Superpositions (Approximate

Nomography), volume 159. American Mathematical Soc., 1997.

[24] Andrei N. Kolmogorov. The Representation of Continuous Functions of Several Vari-

ables by Superpositions of Continuous Functions of a Smaller Number of Variables.

146

Doklady Akademii Nauk SSSR, 108(2):179–182, 1956.

[25] Andrei N. Kolmogorov. On the Representation of Continuous Functions of Several

Variables as Superpositions of Continuous Functions of One Variable and Addition.

Dokl. Akad. Nauk SSSR, 114:5:953–956, 1957. English transl. Amer. Math. Soc. Transl.

(2) 28 (1963), 55.

[26] Mario Köppen. On the Training of a Kolmogorov Network, pages 474–9. ICANN 2002,

LNCS 2415, 2002.

[27] Věra Kŭrková. Kolmogorov’s Theorem and Multilayer Neural Networks. Neural Net-

works, 5(3):501–506, 1992.

[28] Pierre-Emmanuel Leni, Yohan D. Fougerolle, and Frédéric Truchetet. Kolmogorov Su-

perposition Theorem and Wavelets for Image Compression. Wavelet Applications in

Industrial Processing VII, Proceedings of the SPIE, 7535(1):753502–753510, 2010.

[29] William A. Light. The DilibertoStraus Algorithm in L1 (X× Y). Journal of Approxi-

mation Theory, 38(1):1–8, 1983.

[30] Benjamin F. Logan. The Uncertainty Principle in Reconstructing Functions from Pro-

jections. Duke Mathematical Journal, 42(4):661–706, 1975.

[31] Benjamin F. Logan and Larry A. Shepp. Optimal Reconstruction of a Function from

its Projections. Duke Mathematical Journal, 42(4):645–659, 1975.

[32] George G. Lorentz. Approximation of Functions. Holt, Rinehart and Winston New

York, 1966.

147

[33] Phillip A. Ostrand. Dimension of Metric Spaces and Hilberts Problem 13. Bulletin of

the American Mathematical Society, 71(4):619–622, 1965.

[34] Alexander Ostrowski. Über Dirichletsche Reihen und Algebraische Differentialgleichun-

gen. Mathematische Zeitschrift, 8(3-4):241–298, 1920.

[35] Allan Pinkus. Ridge Functions, volume 205. Cambridge University Press, 2015.

[36] George Pólya and Gabor Szegö. Problems and Theorems in Analysis I: Series, Integral

Calculus, Theory of Functions. Springer, 1978. Transl. D. Aeppli.

[37] Marcello Sanguineti. Universal Approximation by Ridge Computational Models and

Neural Networks: A Survey. The Open Applied Mathematics Journal, 2(1):31–58, 2008.

[38] David A. Sprecher. On the Structure of Continuous Functions of Several Variables.

Transactions of the American Mathematical Society, 115:340–355, 1965.

[39] David A. Sprecher. On the Structure of Representations of Continuous Functions of

Several Variables as Finite Sums of Continuous Functions of One Variable. Proceedings

of the American Mathematical Society, 17(1):98–105, 1966.

[40] David A. Sprecher. On Similarity in Functions of Several Variables. The American

Mathematical Monthly, 76(6):627–632, 1969.

[41] David A. Sprecher. An Improvement in The Superposition Theorem of Kolmogorov.

Journal of Mathematical Analysis and Applications, 38:208–213, 1972.

[42] David A. Sprecher. A Numerical Implementation of Kolmogorov’s Superpositions. Neu-

ral Networks, 9(5):765–772, 1996.

148

[43] David A. Sprecher. A Numerical Implementation of Kolmogorov’s Superpositions II.

Neural Networks, 10(3):447–457, 1997.

[44] David A. Sprecher. From Algebra to Computational Algorithms: Kolmogorov and

Hilbert’s Problem 13. Docent Press, 2017.

[45] Yaki Sternfeld. Hilbert’s 13th Problem and Dimension. In Geometric Aspects of Func-

tional Analysis, pages 1–49. Springer, 1989.

[46] John M. Sullivan. Curves of Finite Total Curvature. In Discrete Differential Geometry,

pages 137–161. Springer, 2008.

[47] Anatoli G. Vitushkin. On the 13th Problem of Hilbert. DAN, 95:701–704, 1954.

[48] Anatoli G. Vitushkin. Some Properties of Linear Superpositions of Smooth Functions.

In Dokl. Akad. Nauk SSSR, volume 156, pages 1003–1006, 1964.

[49] Vladimir M. Tikhomirov. Kolmogorov’s Work on �-Entropy of Functional Classes and

the Superposition of Functions. Russian Mathematical Surveys, 18:5:51–87, 1963.

