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Hilbert’s 13th Problem

Problem Statement (1900)

Can the solution x to the 7th degree polynomial equation

x7 + ax3 + bx2 + cx + 1 = 0

be represented by a finite number of compositions of bivariate
continuous/analytic functions using the three variables a, b, c?

Jonas Actor (Rice University) KST 13 September 2017 4 / 49



Hilbert’s 13th Problem

Larger focus to Hilbert’s Problem:

Which functions can be represented using a finite number of
compositions of simpler functions?

Continuous functions → Continuous functions?
Analytic functions → Continuous functions?
Analytic functions → Analytic functions?

How ‘simple’ or ‘complex’ is a function?

Number of variables?
Some other measure
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An Example

f (x1, x2) = x1x2

Can we create φ1, φ2, ψ11, ψ12, ψ21, ψ22 univariate polynomials such that

f (x1, x2) =
2∑

i=1

φi ◦
2∑

j=1

ψij(xj)?
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An Example

Let

φ1(z) =
1

4
z2 φ2(z) = −1

4
z2,

and

ψ11(x1) = x1 ψ12(x2) = x2

ψ21(x1) = x1 ψ22(x2) = −x2

Then,

2∑
i=1

φi

( 2∑
j=1

ψij(xj)

)
=

1

4
(x1 + x2)2 − 1

4
(x1 − x2)2

=
1

4
(x21 + 2x1x2 + x22 )− 1

4
(x21 − 2x1x2 + x22 )

=
1

4
(2x1x2 + 2x1x2)

= x1x2.

Jonas Actor (Rice University) KST 13 September 2017 7 / 49



An Example

Can we do better?

Use fewer terms!

What concessions do we make?

Give up using polynomials, instead continuous functions
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An Example

Let
φ1(z) = exp(z) ψi (xi ) = log(xi )

Then,

φ1

( 2∑
j=1

ψj(xj)

)
= exp(log(x1) + log(x2))

= exp(log(x1x2))

= x1x2.

We have reduced the number of outer summands by 1.
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An Example

Representation not unique

Number of terms in (inner) summand depends on dimension

Traded ‘complexity’ of functions used

Note, these are all very special functions
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Towards Kolmogorov’s Superposition Theorem

Hilbert conjectured the answer was ‘no’, that even for continuous
functions, such a representation was not always possible

A. Kolmogorov and V.I. Arnold made progress in the 1950s

Arnold (at age 19) proved the answer was ‘yes’ in 1957: any
multivariate continuous function can be represented as a
superposition of bivariate continuous functions

Two weeks later, Kolmogorov reduced the bivariate functions from
Arnold to univariate functions
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Kolmogorov’s Superposition Theorem (KST) (1957)

Theorem

Let f : Rn → R ∈ C ([0, 1]n) where n ≥ 2. Then, there exist
ψpq : [0, 1]→ R ∈ C [0, 1] and χq : R→ R ∈ C (R), where p ∈ {1, . . . , n}
and q ∈ {0, . . . , 2n}, such that

f (x1, . . . , xn) =
2n∑
q=0

χq

 n∑
p=1

ψpq(xp)

 .
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Kolmogorov’s Superposition Theorem: Reformulation

This reformulation is due to Sprecher.

Theorem

Let f : Rn → R ∈ C ([0, 1]n) where n ≥ 2. Fix ε ≤ 1
2n , and choose λ ∈ R

such that 1 = λ0, λ1, . . . , λn−1 are integrally independent. Then, there
exist ψ : [−1, 1]→ R ∈ C [−1, 1] and χq : R→ R ∈ C (R) for
q ∈ {0, . . . , 2n}, such that

f (x1, . . . , xn) =
2n∑
q=0

χq

 n∑
p=1

λpψ(xp + qε)

 .
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Implications

Multivariate functions suffer from the ‘curse of dimensionality’, making
computation hard for higher dimensions.

Multivariate continuous functions are really
univariate continuous functions

addition

function composition

We understand each of those three things very well...
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Implications

Quest: Can we use KST to represent multivariate functions for efficient
computation?
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Setup

Constructions are by induction on j ∈ N
Throughout the rest of this talk, fix ε = 1/2n
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Space Partitioning

Town: closed interval
System of towns: set of disjoint closed intervals

Tj a system of towns ⊆ [−1, 1]

T q
j a system of towns ⊆ [−1 + qε, 1 + qε] where

T q
j = {t + qε : t ∈ Tj}.

Enumerate the towns in T q
j by indices 1 ≤ i ≤ mj

T q
j = {tq1 , t

q
2 , . . . , t

q
mj
}.
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Space Partitioning

Squares: products of towns

Sq
j ;i1,...,in

=
∏n

p=1 t
q
ip

for towns tqip ∈ T q
j for p = 1, . . . , n

S q
j = {Sq

j ;i1,...,in
, : 1 ≤ i1, . . . , in ≤ mj} set of all squares

Squares are pairwise disjoint: for any q, if (i1, . . . , in) 6= (i ′1, . . . , i
′
n), then

Sq
j ;i1,...,in

∩ Sq
j ,i ′1,...,i

′
n

= ∅.
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Fundamental Lemma

Define Ψq(x1, . . . , xn) =
∑n

p=1 ψ
pq(xp) for each q ∈ {0, . . . , 2n}, where

ψpq ∈ C [0, 1]

Lemma

For each j , q, suppose the families of squares S q
j satisfy the following:

1 Each point x ∈ [0, 1]n intersects squares from at least n + 1 of the
2n + 1 families of squares

2 supSq
j ;i1,...,in

∈S q
j

Diam[Sq
j ;i1,...,in

]→ 0 uniformly as j →∞
3 Ψq(Sq

j ;i1,...,in
) ∩Ψq(Sq

j ,i ′1,...,i
′
n
) = ∅ when (i1, . . . , in) 6= (i ′1, . . . , i

′
n).

Then, any function f ∈ C ([0, 1]n) admits a KST representation

f =
2n∑
q=0

χq ◦Ψq.
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Fundamental Lemma: Reformulation

λ1, . . . , λn ∈ R integrally independent

ψj : [−1, 1]→ R
ψ := limj→∞ ψj uniformly

For q ∈ {0, . . . , 2n} define Ψq : [0, 1]n → R

Ψq(x1, . . . , xn) =
n∑

p=1

λpψ(xp + qε).
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Fundamental Lemma: Reformulation

Lemma: Reformulation

For each j , q, suppose the systems of towns T q
j and function ψj satisfy

the following:

1 Each point x ∈ [0, 1] intersects towns from at least 2n of the 2n + 1
systems of towns

2 supt∈Tj
Diam(t)→ 0 uniformly as j →∞

3 ψj(t1) ∩ ψj(t2) = ∅ but are rational for any t1, t2 ∈ Tj ′ for j ′ ≤ j

Then, any function f ∈ C ([0, 1]n) admits a KST representation

f =
2n∑
q=0

χq ◦Ψq.
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Comments

Construction of squares (specifically, the n + 1 of 2n + 1 property and
the shrinking diameter) are important for outer function

Hard part of inner function construction is the pairwise disjoint image
condition
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Smoothness of Inner Functions

Original KST Proof (1957): Hölder continuous
◦ Squares are uniformly spaced, and scale self-similarly

Fridman (1967): Can be Lipschitz continuous, constant 1

Vitushkin and Henkin (1954): Not differentiable at a dense set of
points
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Lipschitz vs. Hölder Continuity

Definition

A function f : [0, 1]n → R is Lipschitz continuous with constant C if
∀x , y ∈ [0, 1]n,

‖f (x)− f (y)‖ ≤ C ‖x − y‖ .

Definition

A function f : [0, 1]n → R is Hölder(α) continuous with constant C for
α ∈ (0, 1), if ∀x , y ∈ [0, 1]n,

‖f (x)− f (y)‖ ≤ C ‖x − y‖α .

Hölder functions suffer from high storage/evaluation complexity, making
them impractical for computation
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Terminology

Tj : system of towns (closed intervals) at refinement level j

T q
j : system of shifted towns

T q
j =

{
t + qε : t ∈ Tj , q ∈ {−2n, . . . , 2n}

}
.

ψj : [−1, 1]→ R
ψ = limj→∞ ψj

Ξj : [0, 1]→ N

Ξj(x) =

∣∣∣∣{q ∈ {0, . . . , 2n} : ∃t ∈ T q
j such that x ∈ t

}∣∣∣∣

Jonas Actor (Rice University) KST 13 September 2017 27 / 49



Lemma

Lemma

It is sufficient to complete KST representation, if for each j ∈ N, the
system of towns Tj and the function ψj : [−1, 1]→ R ∈ C [−1, 1] satisfy
the following:

1 supt∈Tj
Diam(t)→ 0 uniformly as j →∞.

2 ∀x ∈ [0, 1], Ξj(x) ∈ {2n, 2n + 1}
3 ∀t ∈ Tj , ψj(t) ∈ Q
4 ∀t1 6= t2 ∈ Tj , ψ(t1) ∩ ψ(t2) = ∅.
5 ψj is piecewise linear with maximum slope of m̂j = 1− 2−j .

Jonas Actor (Rice University) KST 13 September 2017 28 / 49



Strategy

Start with ψ0 ≡ 0 and T0 = {[−1, 1]}. Then for j ∈ N do:

Select T̂j ⊆ Tj towns to break (length ≥ 2−j)

Find Holes

Solve for Plugs

Create Gaps and Update
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Find Holes

Break t ∈ T̂j at its midpoint p by removing an open interval g .

t 7→ t− ∪ g ∪ t+ p ∈ g

Danger: p might no longer be contained by enough systems of towns!
Might cause Ξj+1(p) = 2n − 1.
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Find Holes

X
p

h

ε

Figure: Sketch of scenario where a break point p falls into a hole, n = 2.
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Solve for Plugs

X
p

h

π

ε

Figure: Sketch of adding a plug to our previous scenario.

Solution: Add in small ‘plugs’ so that when we remove a gap around p,
we do not lose containment
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Solve for Plugs

p̂

π

π

ψj

ψj+1 from red π

ψj+1 from blue π

Figure: Sketch of how size of plugs changes the slope of ψj+1.

Danger: Adding in a plug =⇒ slope of ψj+1 might exceed our bound!
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Solve for Plugs

How big can π be for a maximum slope of m̂ = 1− 2−j−1?

Might need more than one plug per break point (no more than 2)

Might need more than one plug per hole

Solution: Solve a linear system!
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Solve for Plugs

For ν break points pi , 1 ≤ i ≤ ν, that shift into hole h = (b0, aν+1)

Want disjoint plugs πi = [ai , bi ] ai, bi unknown

p̂i := pi − qiε ∈ πi ⊂ h

ψj+1 monotonic, piecewise linear, constant on towns/plugs

ψj(p̂i ) = ψj+1([ai , bi ])

We use the following notation for (known) function values:

f0 = ψj(b0)

fi = ψj(p̂i ) 1 ≤ i ≤ ν
fν+1 = ψj(aν+1)
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Solve for Plugs

b0 a1
p̂1
b1 a2

p̂2
b2 a3

f0

f1

f2

f3

Figure: Sketch of scenario for finding two plugs, with ψj in black and ψj+1 in
blue. Note the symmetry constraint b1 − p̂1 = p̂2 − a2 is enforced.
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Solve for Plugs

ν + 1 equations:

m̂(ai − bi−1) = fi − fi−1, 1 ≤ i ≤ ν + 1.

ν − 1 symmetry constraints:

bi − p̂i = p̂i+1 − ai+1, 1 ≤ i ≤ ν − 1.

Jonas Actor (Rice University) KST 13 September 2017 37 / 49



Solve for Plugs

This provides the linear system Cx = z

C is block diagonal, invertible =⇒ unique solution exists

ψj monotonic increasing =⇒ plugs are disjoint with non-empty
interior

For each h, update Tj to include the plugs πi .
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Create Gaps

Recall our goal to ‘break’ t ∈ T̂j at break point p:

t 7→ t− ∪ g ∪ t+ p ∈ g

At this point, Ξj(p) = 2n + 1 =⇒ Ξj+1(p) ≥ 2n :

∀q ∈ {0, . . . , 2n}, ∃tq ∈ T q
j such that p − qε ∈ tq,

so we can remove some open g from t while keeping that ∀x ∈ [0, 1],
Ξj(x) ∈ {2n, 2n + 1}.
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Create Gaps

g
h

π

ε

Figure: Sketch of creating a gap to our previous scenario.
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Create Gaps

Assign ψj+1(t−) = ψj(t), and choose value for ψj+1(t+) so that:

Maintain monotonicity

Slope is bounded ≤ 1
2

Update Tj to Tj+1 by replacing t with t−, t+.
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Implementation

Implemented in Python, in serial (for now)

Stores one system of towns Tj as an Interval Tree

Extended precision
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Results: Towns

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure: System of towns, after refinement j = 1
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Results: Towns

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2
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Figure: System of towns, after refinement j = 2
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Results: Towns

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure: System of towns, after refinement j = 3
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Results: ψ

−1.0 −0.5 0.0 0.5 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Figure: Function ψ generated after 11 iterations.
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Outer Function

Given f , need to construct outer function:

Dependent on f

Only need one (Lorenz 1966)

If f is differentiable, needs to cancel out the non-differentiability of
inner function

Constructed iteratively by bounding oscillation and refining

Implement in code...
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