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Goal : Compare CNN kernels vs. imaging features

In the last decade, the traditional image segmentation methods have been
replaced by techniques using deep convolutional neural networks (CNN).
These CNNs are treated as ‘black boxes’, which limits clinical interpreta-
tion of what image features a CNN uses in its decision-making. However,
convolution-based image processing features are already used by clinicians
for manual image segmentation.

How similar are CNN convolution kernels to these known
clinical image processing features?

Clincal image processing kernels
• Laplacian
• Edge detection
• Sharpen
• Identity
• Gaussian blur
• Local mean

Learned convolution kernel
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Structure of our sample UNet.

Conclusions

• Kernels roughly cluster around known clinical imaging features
• Clustering patterns emerge in decoder half of UNet
• Distribution of kernels closest to each imaging feature remains

consistent across encoder half of UNet

1. Find image processing kernel with closest values

1 Flatten each 3× 3 kernel into a vector in R9

2 Assemble data matrix from flattened kernels
3 Cluster 9-dimensional kernel data by k-means
4 Visualize via PCA
5 Superimpose clinical image processing kernels
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Clustering visualizations at different layers of our UNet. Encoder layers (top) show a
roughly normal distribution of convolution features, while distinct patterns emerge in the
decoder layers (bottom).

2. Find image processing kernel with closest actions

1 Construct matrix A[K] ∈ Rnxny×nxny describing convolution with K

2 Compute singular values of linear operator
3 Compute singular values of clinical image processing kernels
4 Assign closest clinical feature F that has smallest spectral

distance to K
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A[K] = UKΣKV T
K ∀K ∈ {layers}

A[F ] = UFΣFV T
F ∀F ∈ {features}

find arg min
F∈{features}

‖ΣK − ΣF‖1

Assignment of convolution kernels to their closest image processing feature counterparts.
A label of ‘indeterminate’ was given if the L1 distance was not within 10% of the largest
singular value.
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