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Goal : Image segmentation with limited data

In the last decade, the traditional method of PDE-based image
segmentation has been replaced by techniques using deep con-
volutional neural networks (DCNN). However, DCNN methods
require large amounts of labeled training data; in many indus-
trial problems, such training data is difficult and costly to obtain.
This contrasts the previous PDE methods, which required little
or no training data.
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Three methods

Level Sets

• First-order hyperbolic
PDE
φt + F T∇φ = 0

• Segmentation is level
set of solution φ = 0

• F forces φ outward
based on image,
curvature

UNet

• Type of DCNN
developed for
biomedical images

• Edge + feature
detection at
increasing scales

UNet + Skip

• Improvement on
standard UNet
architecture

• Adds skip
connections across
layers of ‘U’

Metric of comparison

Using data from the MICCAI 2017 LiTS challenge, we compare
the performance of the PDE-based level set equation to a stan-
dard deep convolutional UNet, with and without skip connec-
tions. Models are scored by the Dice similarity coefficient (DSC):

DSC(Strue, Spred) = 2 |Strue ∩ Spred|
|Strue| + |Spred|

Implementation

Level Set UNet UNet+Skip

Framework ITK-SNAP TF+Keras TF+Keras
Training time — 78h 78h

Prediction time 600s 70s 73s
# Parameters 3 32M 32M

DCNN
Hyperparameters

Epochs 40
Layers 8

# Convolutions 32
Activation ReLu
Optimizer Adadelta

Loss DSC

Image Truth Level Set

DSC(Liver)=0.745
DSC(Tumor)=0.000

UNet

DSC(Liver)=0.955
DSC(Tumor)=0.339

UNet+Skip

DSC(Liver)=0.953
DSC(Tumor)=0.000

Conclusions

• Level sets require significant tuning but no training.
• DCNN provides accurate liver boundary

segmentation.
• No method excels at tumor identification.
• Complicated architectures are not always

better!
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Future Work

• Implement 2-stage process for tumor segmentation
• Compare with other DCNN architectures, e.g. ResNet
• Develop optimal control formulation for level set

equation
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