A comparison of image segmentation methods

Jonas A. Actor, ¹ Béatrice Rivière, ¹ and David Fuentes ²

¹Computational and Applied Mathematics, Rice University

²Imaging Physics, University of Texas MD Anderson Cancer Center

Goal: Image segmentation with limited data

In the last decade, the traditional method of PDE-based image segmentation has been replaced by techniques using deep convolutional neural networks (DCNN). However, DCNN methods require large amounts of labeled training data; in many industrial problems, such training data is difficult and costly to obtain. This contrasts the previous PDE methods, which required little or no training data.

Metric of comparison

Using data from the MICCAI 2017 LiTS challenge, we compare the performance of the PDE-based level set equation to a standard deep convolutional UNet, with and without skip connections. Models are scored by the Dice similarity coefficient (DSC):

$$DSC(S_{true}, S_{pred}) = \frac{2|S_{true} \cap S_{pred}|}{|S_{true}| + |S_{pred}|}$$

Truth **Image**

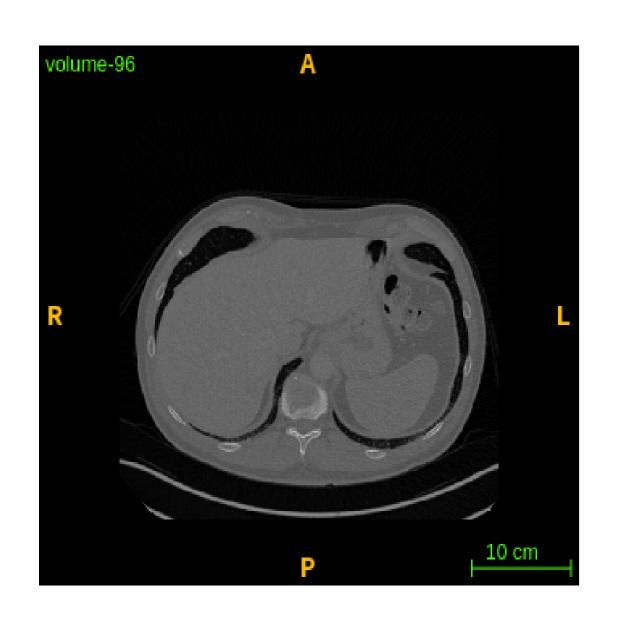
Conclusions

DCNN provides accurate liver boundary

No method excels at tumor identification.

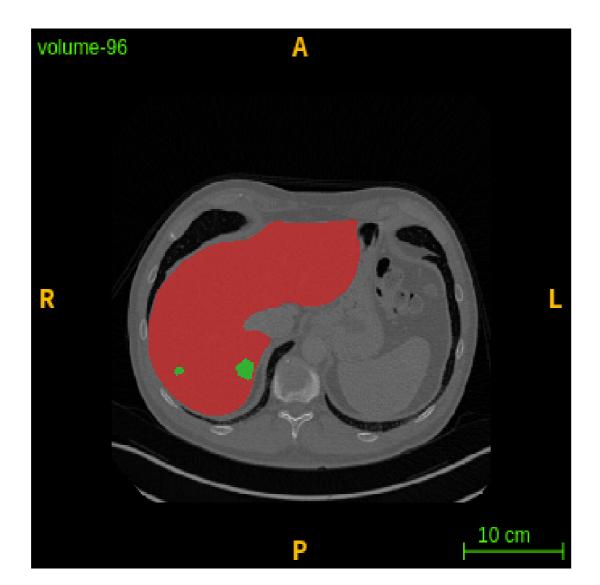
Complicated architectures are not always

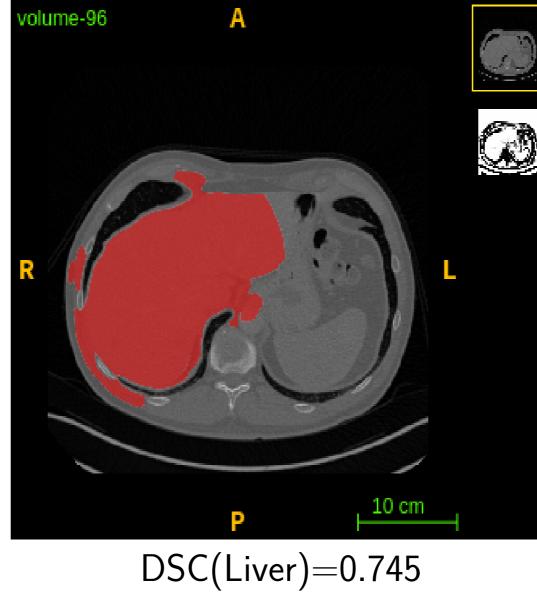
Level sets require significant tuning **but** no training.



segmentation.

better!

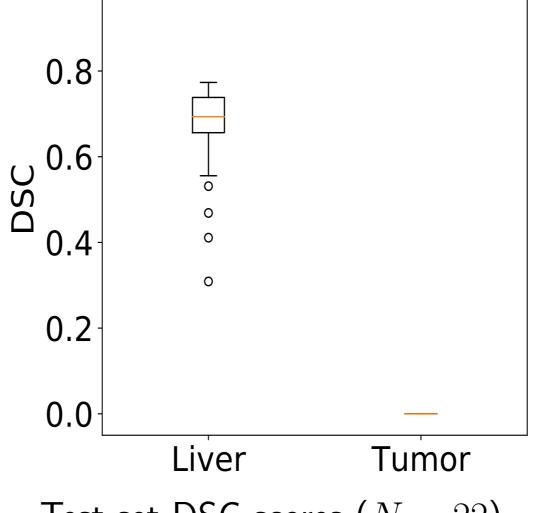




Level Set

DSC(Tumor) = 0.000





Test set DSC scores (N = 22)

Three methods

Level Sets

- First-order hyperbolic PDE
- $\phi_t + F^T \nabla \phi = 0$
- Segmentation is level set of solution $\phi = 0$
- F forces ϕ outward based on image, curvature

UNet

- Type of DCNN developed for biomedical images
- Edge + feature detection at increasing scales

UNet + Skip

- Improvement on standard UNet architecture
- Adds skip connections across layers of 'U'

Implementation

Level Set UNet UNet+Skip Framework ITK-SNAP TF + Keras TF + Keras Training time 78h 78h Prediction time 600s 73s 70s 32M 32M # Parameters

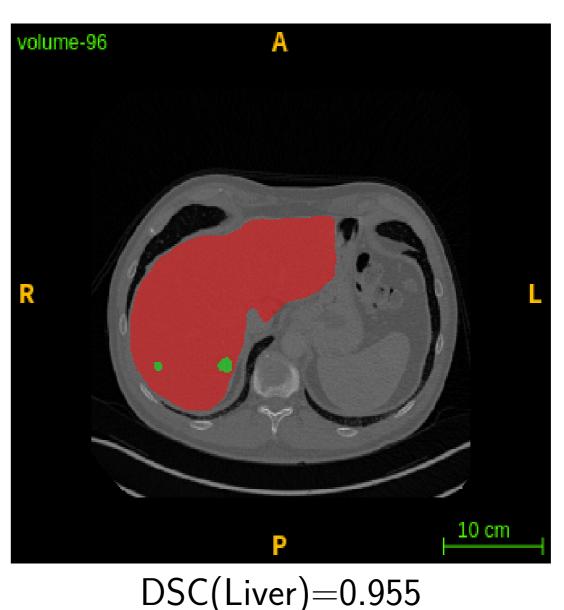
Hyperparameters

DCNN

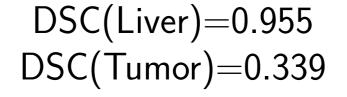
Epochs 40 Layers 8 # Convolutions 32 Activation ReLu Optimizer Adadelta

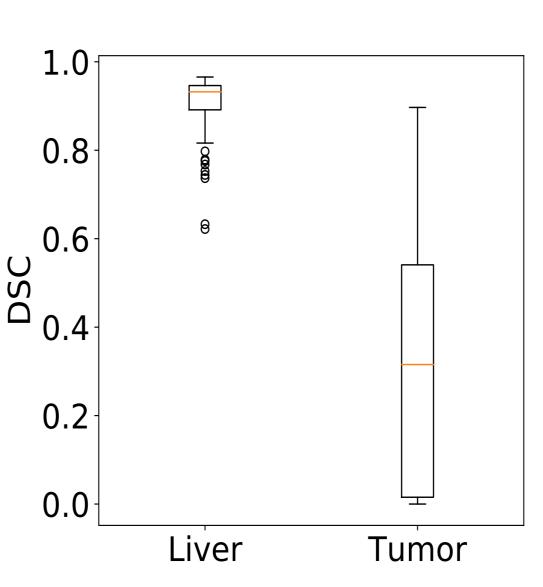
UNet+Skip

Loss DSC



UNet





Test set DSC scores (N = 131)



DSC(Liver) = 0.953DSC(Tumor)=0.000

8.0 0.2 0.0 Liver **Tumor**

Test set DSC scores (N = 131)

Future Work

- Implement 2-stage process for tumor segmentation
- Compare with other DCNN architectures, e.g. ResNet
- Develop optimal control formulation for level set equation

Acknowledgements

JAA is supported by a training fellowship from the Gulf Coast Consortia, on the NLM Training Program in Biomedical Informatics & Data Science (T15LM007093), with supplement from the Ken Kennedy Institute Computer Science & Engineering Enhancement Fellowship, funded by the Rice Oil & Gas HPC Conference.