Stabilizing Deep Convolutional Neural Networks for Image Segmentation

Jonas A. Actor, ^{1,2} Beatrice Riviere, ¹ and David Fuentes ²

¹Computational and Applied Mathematics, Rice University

²Imaging Physics, University of Texas MD Anderson Cancer Center

Problem.

small perturbations in input cause large changes in segmentation output

Solution.

lower the Lipschitz constant for each convolutional layer in DCNN

At each layer, kernel
$$K = \begin{bmatrix} k_{-1,-1} & k_{-1,0} & k_{-1,1} \\ k_{0,-1} & k_{0,0} & k_{0,1} \\ k_{1,-1} & k_{1,0} & k_{1,1} \end{bmatrix}$$

apply convolution kernel $u \longmapsto K * u + b$ or, express as a linear operator $\vec{u} \longmapsto A_{[K]} \, \vec{u} + b,$

Lipschitz constant of convolution layer $= \|A_{[K]}\|_2$

Acknowledgements

JAA is supported by a training fellowship from the Gulf Coast Consortia, on the NLM Training Program in Biomedical Informatics & Data Science (T15LM007093), with supplement from the Ken Kennedy Institute Computer Science & Engineering Enhancement Fellowship, funded by the Rice Oil & Gas HPC Conference.

Problem.

 $A_{[K]}$ is too big to compute $\left\|A_{[K]}
ight\|_{2}$ quickly

Solution.

use Hölder's Inequality to bound $\|A_{[K]}\|_{_{2}}$ instead:

$$||A_{[K]}||_2 \le ||A_{[K]}||_1 ||A_{[K]}||_{\infty} \le ||K||_{1,ent}$$

Implementation and Results

- use ℓ_1 regularization on kernels
- implement with Keras + Tensorflow
- compare built-in method with proximal gradient method
- train DCNN on MICCAI LiTS 2017 Challenge liver CT data
- assess accuracy using Dice Similarity Coefficient (DSC)

Regularization	Lipschitz bound	DSC (training)	DSC (testing)
none	9.34×10^{41}	0.938	0.930
ℓ_1	9.73×10^{31}	0.924	0.931
Proximal ℓ_1	1.67×10^{31}	0.938	0.920

Conclusions

- fast \rightarrow linear complexity in size of kernel
- theoretically sound + empirically reliable
- no extra implementation

jonasactor@rice.edu

https://jonasactor.github.io

https://github.com/jonasactor/livermask