Exploiting Lipschitz Continuity for the Kolmogorov Superposition Theorem

Jonas Actor

Rice University

SGA 2018

Contact: jonasactor@rice.edu

Dimension Reduction Methods

• ANOVA:

$$f(x_1,\ldots,x_d) \approx f_0 + \sum_i f_i(x_i) + \sum_{i < j} f_{i,j}(x_i,x_j) + \ldots$$

$$f(\mathbf{x}_1,\ldots,\mathbf{x}_d) \approx \sum_j w_j \phi(\|\mathbf{x}-\mathbf{x}_j\|)$$

• RKHS:

$$f(x_1,\ldots,x_d)=\sum_i a_i K(x,x_i)$$

1

Kolmogorov Superposition Theorem¹

Any continuous $f:[0,1]^d ightarrow \mathbb{R}$ can be written as

$$f(x_1,\ldots,x_d) = \sum_{q=0}^{2d} \chi\left(\sum_{p=1}^d \psi_{p,q}(x_p)\right)$$

¹ Kolmogorov, Dokl. Akad. Nauk SSSR 114:5, 1957

Implication

$$\Psi^q(x_1,\ldots,x_d) = \sum_{
ho=1}^d \psi_{
ho,q}(x_{
ho})$$
 (independent of f)

$$\mathsf{KST}: f \longmapsto \chi$$

Outline of Talk

1 Constructive KST

Table of Contents

1 Constructive KST

2 Smoothness Concerns

$\Psi = (\Psi^0, \dots, \Psi^{2d})$ embeds $[0,1]^d$ into \mathbb{R}^{2d+1}

 Ψ balances continuity vs. ability to discriminate points

 χ assigns values of embedded space $\Psi([0,1]^d)$ to match f

Concept: Spatial Decomposition

$$\mathbb{S}^k\colon \mathsf{Near} ext{ partition of } [0,1]^a$$
 diam $(\mathbb{S}^k) o 0$ as $k o \infty$

Disjoint Images of Squares

For any two squares $S, S' \in S^k$, $\Psi^q(S) \cap \Psi^q(S') = \emptyset$.

Inner Function ψ

At each refinement level k:

- Assign a value of ψ^k on lower left corner of each square
- Value is fixed for all future k

Inner Function ψ

 ψ^k (near) constant on squares, linear on gaps

large gaps \rightarrow easier for χ to tell values of f apart small gaps \rightarrow steep $\psi^k \rightarrow$ worse oscillations

Gaps cannot be too large

Need every point $\mathbf{x} \in [0, 1]^d$ to be contained in some square for more than half of the sets of squares

Otherwise, not enough 'correct' information to reconstruct f

Define 1 function ψ instead of $2d^2 + d$ functions $\psi_{p,q}$:

$$\psi_{p,q}(x_p) = \lambda_p \, \psi(x_p + q\varepsilon)$$

 $\lambda_1, \ldots, \lambda_d$ integrally independent

²Sprecher, Trans. AMS, 115:340-355, 1965

Spatial Decomposition

Cartesian product of 1D family of intervals

Table of Contents

1 Constructive KST

Traded smoothness for variables:

- KST not feasible 3 for $\psi_{p,q} \in C^1([0,1])$
- Current $\psi_{p,q} \in \mathsf{H\"older}([0,1])$
- Possible $\psi_{p,q} \in \operatorname{Lip}([0,1])$

³Vituskin, DAN, 95:701–704, 1954.

Hölder Continous $\widehat{\psi}$

- Define iteratively: $\widehat{\psi} = \lim_{k \to} \widehat{\psi}^k$
- Fix values at points with k digits in base γ expansion⁴
 - Small increase for most points
 - Large increase for expansions ending in $\gamma-1$
- Linearly interpolate between fixed values

Hölder Continuous $\widehat{\psi}$: Setup ⁵ ⁶

Radix
$$\gamma \ge 2d + 1$$
 $\beta(k) = \frac{n^{\kappa} - 1}{n - 1}$

$$\mathcal{D}^{k} = \left\{ \frac{i}{\gamma^{k}} : i = 0, \dots, \gamma^{k} \right\}$$
$$= \left\{ i_{0} \cdot i_{1} i_{2} \dots i_{k} : i_{\ell} \in \{0, \dots, \gamma - 1\}, \ \ell = 0, \dots, k \right\}.$$

⁵Köppen, ICANN 2002, LNCS 2415, 2002

⁶Braun and Griebel, Constr. Approx., 30:653-675, 2009

.

Hölder Continuous $\widehat{\psi}$: Grid

Hölder Continuous $\widehat{\psi}$: Definition

$$\widehat{\psi}^{k}(d_{k}) = egin{cases} d_{k} & k = 1 \ \widehat{\psi}^{k-1}\left(d_{k} - rac{i_{k}}{\gamma^{k}}
ight) + rac{i_{k}}{\gamma^{eta(k)}} & k > 1, \ i_{k} < \gamma - 1 \ rac{1}{2}\left(\widehat{\psi}^{k}\left(d_{k} - rac{1}{\gamma^{k}}
ight) + \widehat{\psi}^{k-1}\left(d_{k} + rac{1}{\gamma^{k}}
ight)
ight) & k > 1, \ i_{k} = \gamma - 1 \end{cases}$$

Interpolate linearly to extend $\widehat{\psi}^k$ from \mathcal{D}^k to [0,1]

$$\widehat{\psi} = \lim_{k \to \infty} \widehat{\psi}^k$$

Köppen's KST Inner Function $\widehat{\psi}^7$

18

Need Better Than Hölder

For $\psi \in$ Hölder $_{lpha}([0,1])$, $|\psi(x) - \psi(y)| < \epsilon \quad ext{if} \quad |x-y| < \epsilon^{1/lpha}$

ψ is not locally Lipschitz on **any** open interval $I \subset [0,1]$

Reasoning for Lipschitz Construction

KST inner functions are strictly monotonic increasing

... which are of Bounded Variation

... so they define rectifiable curves

... which have Lipschitz reparameterizations.

Lipschitz Reparameterization

Reparameterization
$$\sigma : [0, 1] \rightarrow [0, 1]$$

$$\sigma(x) = \frac{\text{arclength of } \widehat{\psi} \text{ from 0 to } x}{\text{total arclength of } \widehat{\psi} \text{ from 0 to 1}}$$

$$\psi(\mathbf{x}) = \widehat{\psi}(\sigma^{-1}(\mathbf{x}))$$

Lipschitz Reparameterization ψ^7

Analysis

•
$$\psi^k = \widehat{\psi^k} \circ (\sigma^k)^{-1}$$
 converges uniformly to ψ

- ψ meets criteria for Kolmogorov inner function
- $\psi \in \operatorname{Lip}_2([0,1])$

Table of Contents

1 Constructive KST

2 Smoothness Concerns

Outer Function: 1D Problem

$$\chi = \lim_{r \to \infty} \chi_r \qquad \qquad f_r = f_{r-1} - \sum_{q=0}^{2d} \chi_{r-1} \circ \Psi^q$$

For $r \in \mathbb{N}$, choose k_r so that the oscillation of

$$f_{r-1} - \sum_{q=0}^{2d} \chi_{r-1} \circ \Psi^q$$
 is bounded by $rac{\|f_{r-1}\|_\infty}{d+1}$

Outer Function: 1D Problem

$$\chi_r: \mathbb{R} \to \mathbb{R} \text{ interpolates}$$
$$\left\{ \left(\Psi^q(\mathbf{d}_{\mathbf{k}_r}), \frac{1}{d+1} f(\mathbf{d}_{\mathbf{k}_r}) \right) : \mathbf{d}_{\mathbf{k}_r} \in \prod_{p=1}^d \sigma(\mathcal{D}_{k_r} + q\varepsilon) \right\}$$

Number of interpolation points grows exponentially with d at each level k_r

Functions with high oscillation on squares require quick growth of k_r wrt. r

Need to be smart about choosing interpolation points

For Hölder ψ , only need polynomial P(d) points ⁷

If oscillation too large at step k_r , choose k_{r+1} so that oscillation is controlled locally

Stabilized by Lipschitz continuity of $\boldsymbol{\Psi}$

⁷ Griebel and Braun, ICHPSC 2009

- KST leverages superpositions for potential dimension reduction
- Lipschitz inner function provides for practical KST computation
- Look to reduce number of interpolation points for outer function

Free Interpolation condition on χ

Adaptive Outer function theory

Framework for computing outer function χ

- Requires squares at each level k
- Requires final high-resolution $\boldsymbol{\Psi}$
- Requires accurate measure of oscillation