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Kolmogorov Superposition Theorem

Any continuous f : [0,1]¢ — R can be written as

f(x, ..., xq) = ZX prq(xp

1 Kolmogorov, Dokl. Akad. Nauk SSSR 114:5, 1957



Implication

d
VI(x1, . xa) = Y Upg(Xp)
p=1

(independent of f)

KST: f — x



Outline of Talk

@ Constructive KST

© Smoothness Concerns

© Outer Function Approximation



Table of Contents

@ Constructive KST



W = (W0 . .. W29) embeds [0,1]¢ into R?+1
WV balances continuity vs. ability to discriminate points

X assigns values of embedded space W([0,1]9) to match f



Concept: Spatial Decomposition

8k: Near partition of [0, 1]¢
diam(8%) — 0 as k — oo




Disjoint Images of Squares

For any two squares S, S’ € 8%, W9(S) N WI(S') = ().
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Inner Function ¢

At each refinement level k:
e Assign a value of 1/ on lower left corner of each square

e Value is fixed for all future k




Inner Function ¢

Y* (near) constant on squares, linear on gaps

wk

large gaps — easier for x to tell values of f apart

small gaps — steep 1¥ — worse oscillations



Gaps cannot be too large

Need every point x € [0,1]9 to be contained in some
square for more than half of the sets of squares

Otherwise, not enough ‘correct’ information to
reconstruct f
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Sprecher’s Reduction?

Define 1 function ¢ instead of 2d? + d functions ¥, 4:

Vp.a(Xp) = Ap (X + qe)

A1, ..., Aq integrally independent

25precher, Trans. AMS, 115:340-355, 1965

11



Spatial Decomposition

Cartesian product of 1D family of intervals
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Why smoothness is a concern. ..

Traded smoothness for variables:

o KST not feasible® for ¢, , € C*([0,1])
o Current v, € Holder([0, 1])
e Possible ¢, , € Lip([0, 1])

3Vituskin, DAN, 95:701-704, 1954.
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Holder Continous 1

o Define iteratively: @Z = limy_, @Zk
« Fix values at points with k digits in base v expansion®

« Small increase for most points
« Large increase for expansions ending in v — 1

o Linearly interpolate between fixed values

4Sprecher, J. Constr. Approx. 1995
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Hélder Continuous ©: Setup 5 6

Radix v > 2d + 1 Bk) = 1=

ﬂ)k:{# ; i:O,...,’yk}

{io.ilig...ik ; ige{O,...,”y—l},fzo,...,k}.

5ksppen, ICANN 2002, LNCS 2415, 2002
Braun and Griebel, Constr. Approx., 30:653-675, 2009
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Holder Continuous J Grid
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Holder Continuous J Definition

dy k=1
V*(di) = @Z)kl(d *i) k>1, i <vy—1

( ( ) wkl(dﬁ )) k>1,ik=~—1

Interpolate linearly to extend 1 from D to [0, 1]
¢ = limy o0 wk
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Koppen's KST Inner Function 12}7
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Need Better Than Holder

For 1) €Halder,([0, 1]),

[p(x) — ()| <e if |x—y| < e/

1 is not locally Lipschitz on any open interval | C [0, 1]
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Reasoning for Lipschitz Construction

KST inner functions are strictly monotonic increasing
... which are of Bounded Variation
... so they define rectifiable curves

... which have Lipschitz reparameterizations.
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Lipschitz Reparameterization

Reparameterization o : [0, 1] — [0, 1]

arclength of @Z from 0 to x
total arclength of @Z from 0 to 1

o(x) =

¥(x) = (07 (x))
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Lipschitz Reparameterization v’
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o« Yk =1pk o (6%)~1 converges uniformly to v
« 1) meets criteria for Kolmogorov inner function

° ¢ S l—ip2([0a 1])
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Comparing Sk and S
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© Outer Function Approximation



Quter Function: 1D Problem

2d
x = lim x, fi=fi1— Y X0V
q=0

For r € N, choose k, so that the oscillation of

2d
fr1— ZXr—l o WA
q=0

IL/

is bounded by =
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Quter Function: 1D Problem

Xr : R — R interpolates

{ (Wq(dkr), d;—l—lf(dkr)> X dk, € H O(Dkr + qa)}

p=1
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Adaptive Approximation

Number of interpolation points grows exponentially with
d at each level k,

Functions with high oscillation on squares require quick
growth of k, wrt. r

Need to be smart about choosing interpolation points
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Adaptive Approximation

For Holder 1), only need polynomial P(d) points ’

If oscillation too large at step k,, choose k,,1 so that
oscillation is controlled locally

Stabilized by Lipschitz continuity of W

7 Griebel and Braun, ICHPSC 2009
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Conclusions

o KST leverages superpositions for potential dimension
reduction

o Lipschitz inner function provides for practical KST
computation

e Look to reduce number of interpolation points for
outer function
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Free Interpolation condition on y
Adaptive Outer function theory

Framework for computing outer function
o Requires squares at each level k
» Requires final high-resolution W

» Requires accurate measure of oscillation
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