Stabilized Image Segmentation in the Presence of Noise

Jonas A. Actor (predoc)
Computational and Applied Mathematics
Rice University

Stabilized Image Segmentation in the Presence of Noise

Jonas A. Actor (predoc)
Computational and Applied Mathematics
Rice University

Medical image segmentation is corrupted by noise from:

- acquisition artifacts
- image processing
- intrasite variability
- model uncertainty

Goal. good segmentation regardless of noise.

small slope, small change from noise

 $K: 3 \times 3$

 $A_{[K]}$: # pixels imes # pixels

 $\begin{array}{cc} K \colon & 3 \times 3 \\ A_{[K]} \colon & \text{\# pixels} \times \text{\# pixels} \end{array}$

small $\left\|A_{[K]}\right\|_2$, small change from noise

Strategy: bound slope of $A_{[K]}$ using K

Reducing $\left\|A_{[K]}\right\|_2$ requires computing $\left\|A_{[K]}\right\|_2$...

...but $A_{[K]}$ is a **big** matrix of size $10^8 \times 10^8$.

Strategy: bound slope of $A_{[K]}$ using K

Reducing $\left\|A_{[K]}\right\|_2$ requires computing $\left\|A_{[K]}\right\|_2$...

... but $A_{[K]}$ is a **big** matrix of size $10^8 \times 10^8$.

Bound $||A_{[K]}||_2$ instead of computing directly:

 $||A_{[K]}||_2 \le ||K||_1$ (magnitude of convolution kernel)

Reducing $\|K\|_1$ decreases effects of noise, and computing $\|K\|_1$ is cheap.

Result: protection against imaging noise

